$150 CNC Mill Is A Tad Slow But Very Solid

diy-150-cnc-mill

Like just about everyone else out there, [Adam] thinks that CNC machines are pretty cool – so cool that he decided to build one of his own from scratch.

The CNC machine was constructed mostly out of MDF and scrap wood, with drawer slides used for smooth gantry movement. An off-brand rotary tool was used to do the actual cutting, and [Adam] picked up a few Sparkfun stepper motors to drive the machine.

The assembly was completed without too much trouble, but [Adam] says that programming the mill was a long and frustrating process. Cutting was rough and not very accurate at first, but little by little he got things working pretty well. As you can see in the video below, while the cuts look great, improvement came at the expense of speed. He says that the machine could use a redesign to speed it up, which he’ll get around to if some free time comes his way.

It’s not the absolute cheapest CNC build we’ve seen, it’s pretty darn close. With a few tweaks, it could definitely be a solid budget-friendly contender.

Continue reading “$150 CNC Mill Is A Tad Slow But Very Solid”

This Panavise Jr. Speed Winder Should Be In Every Maker’s Toolbox

panavise-jr-power-winder

Like many makers, [Chris] has a Panavise Jr. on his workbench that he uses for just about everything. The tiny vise is great for all sorts of tasks, and is often considered an indispensable tool. The only problem with the vise is the amount of time it takes to open and close the thing.

[Chris] estimates that it takes somewhere between 2 and 3 million turns of the crank to move the vise’s jaws from fully open to the fully closed position. He figured that his drill is far better at mindlessly turning circles than he is, so he sat down and designed a bit in Google Sketchup to spin the vise’s crank knob.

He fired up his MakerBot and printed out his first “Speed Winder” drill bit. It was decent, but he thought it could be better. After a handful of revisions, he was finally happy with the results. He says it works great, and has posted the model on Thingiverse so that everyone can print one of their own.

Continue reading to see how [Chris] created the bit along with how much time this thing saves him. Continue reading “This Panavise Jr. Speed Winder Should Be In Every Maker’s Toolbox”

4Track Robot Gets Around With Ease

4track-robot

[Jon] has been developing a slick little RC robot in bits and pieces over the last year or so, which can constructed by anyone with access to a 3D printer. Servos and electronics aside, the entire thing can be put together in short order using the plans he posted on Thingiverse.

The robot makes use of four “caterpillar” type bots, which are all connected via a central frame. Once [Jon] had the general design for a single caterpillar bot down, he moved forward to create the robot you see above. His friend [Julián] lent a hand in the form of electronics and code, which allows the robot to be driven using a standard USB gamepad.

As you can see in the video below, the robot gets around nicely, climbing over obstacles with relative ease. While it is a bit loud, [Jon] says that’s due to the undersized servos they happen to be using at the moment. We think it looks great so far, but [Jon] already has plans to beef up the motors and add wireless control in the near future – we can’t wait to see it then!

Continue reading “4Track Robot Gets Around With Ease”

Automated CD Ripper Build From Lego And Other Parts

[Paul Rea] decided it was finally time to get rid his CD and DVD library by ripping the data onto a hard drive. He has a rather extensive collection of discs and didn’t relish the thought of ripping them one at a time. So he set to work building his own automatic CD ripper/duplicator.

Right off the bat he had several specifications for the build. He wanted it to be platform independent, reliable, and cheap to build. We think he really hit the mark, but he does mention that he’s got a second duplicator build in mind already. This version makes heavy use of Lego parts for the arm and gearing. The base has a stepper motor which swings the arm in an arc which reaches the input pile, the optical drive try, and the output bin. The arm itself has a two-part wooden gripper that is positioned over a CD and uses a limiting switch to sense when the vertical orientation is at the proper point for gripping a disc. We enjoyed reading his log as he discusses the various building challenges he encountered and how each was overcome.

We’ve seen a few other builds like this before. One of our favorites is from way back.

Continue reading “Automated CD Ripper Build From Lego And Other Parts”

Laser Cut 3D Sculptures Remind Us Of An Old Playstation

[Paul] a.k.a. [VoidFraction] put up the source and documentation for his sculptures made with laser cut polygons.

For computing his triangles, [Paul] developed LcAgl, an algorithm that transforms a 3D model into the AutoCAD file needed to cut a whole bunch of triangles and connectors. This file was shot over to a laser cutter and after a confusing assembly, [Paul] can make just about any low polygon count model he wants.

For his sculptures, [Paul] uses Coroplast, a type of corrugated plastic commonly used in political campaign signs. Coroplast is lightweight and flexible, a bonus when [Paul] is fitting his triangles together. The connecting tabs are made from acrylic – a very rigid material, so the triangles are held tightly in place.

Since the models in most 3D games are just a bunch of polygons anyway, this technique reminds us of the first 3D console games. [Paul]’s rhino looks like it walked off the set of a low polygon game like Virtua Fighter or Jumping Flash!.

14-part RepRap Saga Draws To A Close

Behold, another RepRap springs into existence! Well, springs might not be the best choice of words, it took a while and there were many bumps in the road. But [NBitWonder’s] self-built RepRap is now finished and you can read his 14-part build log to see all that went into the process.

We checked in on the project at one of the early stages. At that point he was just beginning to assemble the hardware and we mused that the calibration stage is where we thought things would get exciting. The project didn’t disappoint, as he had many follies getting the extruder heads to work. At first some issues popped up when figuring out what diameter filament would work for the print head he was using. Once that was worked out, a less-than-precise PID controller led to the clogging and eventual destruction of the extruder tip. He goes on to assemble and test a heated build platform only to discover that the resistors shipped with the hardware are shockingly underrated for the task. We could go on and on, but that would ruin the fun for you. Bookmark this one for the weekend and enjoy!

Ultimaker Quality FAQ Is Like Porn For 3D Printers

Do you think it’s not really possible to get amazing resolution from extruder-based 3D printers? You’re wrong, and this post about the attainable quality of prints on the Ultimaker proves it. The Yoda bust seen above was printed with a layer thickness of 0.02mm. This is a hack in itself because this process actually used two different layer thicknesses. The interior of the print, which you can’t see, but serves as a support mechanism for the object was printed at 0.04mm, with just the visible perimeter printed in the smaller thickness. That trickery is just fine with us if this is the result.

[Dave Durrant] discusses the press the Ultimaker has received, which mostly focused on the relatively fast printing process this hardware uses. But he didn’t think the story of the quality you can get with the device was being told. So he put out a call on the mailing list to send in pictures of high-quality 3D prints and he wasn’t disappointed by the response. You’ll see images of busts, bodies, gears, animals, and art pieces. There’s information about how they were printed, but even those not interested in the particulars will appreciate the macro photography that gives you an up-close look at how far we’ve come with these table-top rapid prototyping machines.

[Thanks Taylor]