CNC Router And Fiber Laser Bring The Best Of Both Worlds To PCB Prototyping

Jack of all trades, master of none, as the saying goes, and that’s especially true for PCB prototyping tools. Sure, it’s possible to use a CNC router to mill out a PCB, and ditto for a fiber laser. But neither tool is perfect; the router creates a lot of dust and the fiberglass eats a lot of tools, while a laser is great for burning away copper but takes a long time to burn through all the substrate. So, why not put both tools to work?

Of course, this assumes you’re lucky enough to have both tools available, as [Mikey Sklar] does. He doesn’t call out which specific CNC router he has, but any desktop machine should probably do since all it’s doing is drilling any needed through-holes and hogging out the outline of the board, leaving bridges to keep the blanks connected, of course.

Once the milling operations are done, [Mikey] switches to his xTool F1 20W fiber laser. The blanks are placed on the laser’s bed, the CNC-drilled through holes are used as fiducials to align everything, and the laser gets busy. For the smallish boards [Mikey] used to demonstrate his method, it only took 90 seconds to cut the traces. He also used the laser to cut a solder paste stencil from thin brass shim stock in only a few minutes. The brief video below shows the whole process and the excellent results.

In a world where professionally made PCBs are just a few mouse clicks (and a week’s shipping) away, rolling your own boards seems to make little sense. But for the truly impatient, adding the machines to quickly and easily make your own PCBs just might be worth the cost. One thing’s for sure, though — the more we see what the current generation of desktop fiber lasers can accomplish, the more we feel like skipping a couple of mortgage payments to afford one.

Continue reading “CNC Router And Fiber Laser Bring The Best Of Both Worlds To PCB Prototyping”

Water Jets Will Carve Your Pumpkin

Carving pumpkins by hand is hot, sweaty, messy work, and a great way to slice your way into a critical artery. Why not let a water jet do it for you? It’ll be cleaner and more precise to boot, and [Jo_Journey] is here to show us how. 

So sharp!

Obviously, you’ll need a water jet machine, there’s no getting around that. You’ll also still have to do the basic preparation of the pumpkin yourself—cutting a porthole into the top and mucking it out is your job. With that done, you must then mount the pumpkin on two metal rods which will be used to mount it in the water jet machine’s working area.

You can then create a vector file of your design, and use your chosen software to generate the G-code to run the water jet. [Jo_Journey] uses Scribe, and recommends cutting at a speed of around 200 in/min at low pressure. Remember, it’s pumpkin you’re cutting, not high-strength steel.

There is some inaccuracy, of course—your pumpkin’s surface is not a flat plane, after all—but the results are good enough for most Halloween-related purposes. Even despite the geometrical issues, though, [Jo_Journey] shows us that you can get pleasantly sharp edges on your design. That’s very hard to achieve by hand!

We do love a good holiday hack around these parts, even if it’s out of season. If you’ve been cooking up your own pumpkinous plans, don’t hesitate to let us know! Earlier is sometimes better—after all, who has time to hack together a project if you’ve just read about it on October 29?

Matthias Wandel Hates CNC Machines In Person

Prolific woodworking YouTuber [Matthias Wandel] makes some awesome mechanical contraptions, and isn’t afraid of computers, but has never been a fan of CNC machines in the woodshop. He’s never had one either, so until now he couldn’t really talk. But he had the parts on hand, so he built a wooden CNC router. It’s lovely.

The router itself is what 3D printer folks would call a bed-slinger, and it’s cobbled together out of scrap plywood. Some of the parts have extra holes drilled in them, but “measure once, drill twice” is our motto, so we’re not one to judge. He spends a lot of time making “crash pads” that keep the frame from destroying itself while he’s building it – once the CNC is actually controlling things with the limit switches, we presume they won’t be necessary, but their design is fun anyway.

If you’re at all interested in CNC machines, you should give this video a watch. Not because it’s done the “right” way, but because it’s a CNC that’s being built on a budget from first principles, by an experienced wood builder, and it’s illuminating to watch him go. And by the end of the video, he is making additional parts for the machine on the machine, with all the holes in the right places, so he’s already stepping in the right direction.

He doesn’t love digital design and fabrication yet, though. If you’re making one-offs, it probably isn’t worth the setup time to program the machine, especially if you have all of his jigs and machines at your disposal. Still, we kind of hope he’ll see the light.

Of course, this isn’t the first wooden CNC router we’ve seen around these parts, and it probably won’t be the last. If you want to go even more fundamental, [Homo Faciens]’s series of CNC machines is a lovely mashup of paperclips and potential. Or, if refinement is more your style, this benchtop machine is the bee’s knees.

Continue reading “Matthias Wandel Hates CNC Machines In Person”

Modulathe Is CNC Ready And Will Machine What You Want

Once upon a time, lathes were big heavy machines driven by massive AC motors, hewn out of cast iron and sheer will. Today, we have machine tools of all shapes and sizes, many of which are compact and tidy DIY creations. [Maxim Kachurovskiy]’s Modulathe fits the latter description nicely.

The concept behind the project was simple—this was to be a modular, digital lathe that was open-source and readily buildable on a DIY level, without sacrificing usability. To that end, Modulathe is kitted out to process metal, wooden, and plastic parts, so you can fabricate in whatever material is most appropriate for your needs.

It features a 125 mm chuck and an MT5 spindle, and relies on 15 mm linear rails, 12 mm ball screws, and NEMA23 stepper motors. Because its modular, much of the rest of the design is up to you. You can set it up with pretty much any practical bed length—just choose the right ball screw and rail to achieve it. It’s also set up to work however you like—you can manually operate it, or use it for CNC machining tasks instead.

If you want a small lathe that’s customizable and CNC-ready, this might be the project you’re looking for. We’ve featured some other similar projects in this space, too. Do your research, and explore! If you come up with new grand machine tools of your own design, don’t hesitate to let us know!

Thanks to [mip] for the tip!

Second CNC Machine Is Twice As Nice

[Cody Lammer] built a sweet CNC router. But as always, when you build a “thing”, you inevitably figure out how to build a better “thing” in the process, so here we are with Cody’s CNC machine v2.0. And it looks like CNC v1.0 was no slouch, so there’s no shortage of custom milled aluminum here.

The standout detail of this build is that almost all of the drive electronics and logic are hidden inside the gantry itself, making cabling a lot less of a nightmare than it usually is. While doing this was impossible in the past, because everything was just so bulky, he manages to get an ESP32 and the stepper drivers onto a small enough board that it can move along with the parts that it controls. FluidNC handles the G-Code interpretation side of things, along with providing a handy WiFi interface. This also allows him to implement a nice jog wheel and a very handy separate position and status indicator LCD on the gantry itself.

When you’re making your second CNC, you have not only the benefit of hindsight, but once you’ve cut all the parts you need, you also have a z-axis to steal and just bolt on. [Cody] mentions wanting a new z-axis with more travel – don’t we all! – but getting the machine up and running is the first priority. It’s cool to have that flexibility.

All in all, this is a very clean build, and it looks like a great improvement over the old machine. Of course, that’s the beauty of machine tools: they are the tools that you need to make the next tool you need. Want more on that subject? [Give Quinn Dunki’s machining series a read].

Simple Pen Plotter Rolls On The Table

Pen plotters are popular builds amongst DIY CNC enthusiasts. They’re a great way to learn the fundamentals of motion control and make something useful along the way. In that vein, [Maker101] has created a neat barebones plotter for tabletop use. 

The basic design relies on familiar components. It uses a pair of MGN15 linear rails as the basis of the motion platform, along with NEMA 17 stepper motors to run the X and Y axes. These are assembled with the aid of 3D-printed parts that bring the whole frame together, along with a pen lifter operated with a hobby servo.

The neat thing about the design is that the barebones machine is designed to sit upon an existing tabletop. This eliminates the need to integrate a large flat work surface into the plotter itself. Instead, the X axis just runs along whatever surface you place it on, rolling on a small wheel. It’s likely not ideal for accuracy or performance; we could see the machine itself skating around if run too fast. For a lightweight barebones plotter, though, it works well enough.

If you dig building plotters, you might like to step up to something more laser-y in future. Video after the break.

Continue reading “Simple Pen Plotter Rolls On The Table”

Large gears on a bridge in Geneva, Switzerland

Gear Up: A 15-Minute Intro On Involute Gears

If you’re into CNC machining, mechanical tinkering, or just love a good engineering rabbit hole, you’re in for a treat. Substack’s [lcamtuf] has written a quick yet insightful 15-minute introduction to involute gears that’s as informative as it is accessible. You can find the full article here. Compared to Hackaday’s more in-depth exploration in their Mechanisms series over the years, this piece is a beginner-friendly gateway into the fascinating world of gear design.

Involute gears aren’t just pretty spirals. Their unique geometry minimizes friction and vibration, keeps rotational speeds steady, and ensures smooth torque transfer—no snags, no skips. As [lcamtuf] points out, the secret sauce lies in their design, which can’t be eyeballed. By simulating the meshing process between a gear and a rack (think infinite gear), you can create the smooth, rolling movement we take for granted in everything from cars to coffee grinders.

From pressure angles to undercutting woes, [lcamtuf] explores why small design tweaks matter. The pièce de résistance? Profile-shifted gears—a genius hack for stronger teeth in low-tooth-count designs.

Whether you’re into the theory behind gear ratios, or in need of a nifty tool to cut them at home, Hackaday has got you covered. Inspired?