If you’ve ever gazed at the shoreline of Santos, Brazil, and felt like something was tugging at your inner eye level, you’re not alone. In fact, you’ve spotted one of the world’s most bizarre architectural phenomena.
Santos is an interesting contradiction—it’s a sunny coastal city with pristine beaches that also plays host to a bustling port. What draws the eye, however, is the skyline—it’s decidedly askew. This isn’t a Photoshop job or some avant-garde urban planning experiment, either. It’s a consequence of engineering hubris, poor planning, and geology just doing its thing.
The OTC Station 29.8 meter dish at Carnarvon, Australia, in need of a bit of paint. (Credit: ABC News Australia)
Recently the 29.8 meter parabolic antenna at the Australian OTC (overseas telecommunications commission) station came back to life again after nearly forty years spent in decommissioning limbo.
This parabolic dish antenna shares an illustrious history together with the older 12.8 meter Casshorn antenna in that together they assisted with many NASA missions over the decades. These not only include the Apollo 11 Moon landing with the small antenna, but joined by the larger parabolic dish (in 1969) the station performed tracking duty for NASA, ESA and many other missions. Yet in 1987 the station was decommissioned, with scrapping mostly averted due to the site being designated a heritage site, with a local museum.
Then in 2022 the 29.8 meter parabolic dish antenna was purchased by by ThothX Australia, who together with the rest of ThothX’s world-wide presence will be integrating this latest addition into a satellite tracking system that seems to have the interest of various (military, sigh) clients.
Putting this decommissioned dish back into service wasn’t simply a matter of flipping a few switches. Having sat mostly neglected for decades it requires extensive refurbishing, but this most recent milestone demonstrates that the dish is capable of locking onto a satellites. This opens the way for a top-to-bottom refurbishment, the installation of new equipment and also a lick of paint on the dish itself, a process that will still take many years but beats watching such a historic landmark rust away by many lightyears.
Featured image: OTC Earth Station. (Credit: Paul Dench)
According to [Joanna Goodrich] in IEEE Spectrum, prior to World War II, soldiers who wanted to find land mines, simply poked at the ground with pointed sticks or bayonets. As you might expect, this wasn’t very safe or reliable. In 1941, a Polish signals officer, [Józef Stanislaw Kosacki], escaped to Britain and created an effective portable mine detector.
[Kosaci] was an electrical engineer trained at the Warsaw University of Technology. He had worked as a manager for the Polish National Telecommunication Institute. In 1937, the government tasked him with developing a machine that could detect unexploded grenades and shells. The machine was never deployed.
When Germany invaded Poland in 1939, [Kosacki] returned to military service (he had done a year of compulsory service earlier). He was captured and kept in a prison camp in Hungary. But he managed to escape in late 1939 and joined the Polish Army Corps in Britain, teaching Morse code to soldiers.
Much has been written about the demise of physical media. Long considered the measure of technological progress in audiovisual and computing fields, the 2000s saw this metric seemingly rendered obsolete by the rise of online audiovisual and software distribution services. This has brought us to a period in time where the very idea of buying a new music album, a movie or a piece of software in a physical, or even online, retail store has become largely impossible amidst the rise of digital-only media.
Even so, not all is well in this digital-only paradise, as the problems with having no physical copy of the item which you purportedly purchased are becoming increasingly more evident. From increases in monthly service costs, to items being removed or altered without your consent, as well as concerns over privacy and an inability to resell or lend an album or game to a buddy, there are many reasons why having the performance or software on a piece of off-line, physical media is once again increasing in appeal.
Even if the demise of physical data storage was mostly a trick to extract monthly payments from one’s customer base, what are the chances of this process truly reverting, and to what kind of physical media formats exactly?
There are many AI models out there that you can play with from companies like OpenAI, Google, and a host of others. But when you use them, you get the experience they want, and you run it on their computer. There are a variety of reasons you might not like this. You may not want your data or ideas sent through someone else’s computer. Maybe you want to tune and tweak in ways they aren’t going to let you.
There are many more or less open models, but setting up to run them can be quite a chore and — unless you are very patient — require a substantial-sized video card to use as a vector processor. There’s very little help for the last problem. You can farm out processing, but then you might as well use a hosted chatbot. But there are some very easy ways to load and run many AI models on Windows, Linux, or a Mac. One of the easiest we’ve found is Msty. The program is free for personal use and claims to be private, although if you are really paranoid, you’ll want to verify that yourself.
What is Msty?
Talkin’ about Hackaday!
Msty is a desktop application that lets you do several things. First, it can let you chat with an AI engine either locally or remotely. It knows about many popular options and can take your keys for paid services. For local options, it can download, install, and run the engines of your choice.
For services or engines that it doesn’t know about, you can do your own setup, which ranges from easy to moderately difficult, depending on what you are trying to do.
Of course, if you have a local model or even most remote ones, you can use Python or some basic interface (e.g., with ollama; there are plenty of examples). However, Msty lets you have a much richer experience. You can attach files, for example. You can export the results and look back at previous chats. If you don’t want them remembered, you can chat in “vapor” mode or delete them later.
Each chat lives in a folder, which can have helpful prompts to kick off the chat. So, a folder might say, “You are an 8th grade math teacher…” or whatever other instructions you want to load before engaging in chat.
You probably get a few of these things each week in the mail. And some of them actually do a good job of obscuring the contents inside, even if you hold the envelope up to the light. But have you ever taken the time to appreciate the beauty of security envelope patterns? Yeah, I didn’t think so.
The really interesting thing is just how many different patterns are out there when a dozen or so would probably cover it. But there are so, so many patterns in the world. In my experience, many utilities and higher-end companies create their own security patterns for mailing out statements and the like, so that right there adds up to some unknown abundance.
So, what did people do before security envelopes? When exactly did they come along? And how many patterns are out there? Let’s take a look beneath the flap.
Forty years ago, on the night of Sunday 2 December of 1984, people in the city of Bhopal and surrounding communities were settling in for what seemed like yet another regular night. The worst thing in their near future appeared to be having to go back to school and work the next day. Tragically, many of them would never wake up again, and for many thousands more their lives would forever be changed in the worst ways possible.
During that night, clouds of highly toxic methyl isocyanate (MIC) gas rolled through the streets and into houses, venting from the Bhopal pesticide plant until the leak petered out by 2 AM. Those who still could wake up did so coughing, with tearing eyes and stumbled into the streets to escape the gas cloud without a clear idea of where to go. By sunrise thousands were dead and many more were left severely ill.
Yet the worst was still to come, as the number of casualties kept rising, legal battles and the dodging of responsibility intensified, and the chemical contamination kept seeping into the ground at the crippled plant. Recently there finally seems to be progress in this clean-up with the removal of 337 tons of toxic waste for final disposal, but after four decades of misgivings and neglect, how close is Bhopal really to finally closing the chapter on this horrific disaster?