Building A Full-Spectrum Digital Camera On The Cheap

The sensor on your digital camera picks up a lot more than just the light that’s visible to the human eye. Camera manufacturers go out of their way to reduce this to just the visible spectrum in order to produce photos that look right to us. But, what if you want your camera to take photos of the full light spectrum? This is particularly useful for astrophotography, where infrared light dramatically adds to the effect.

Generally, accomplishing this is just a matter of removing the internal IR-blocking filter from your camera. However, most of us are a little squeamish about tearing into our expensive DSLRs. This was the dilemma that [Gavin] faced until a couple of years ago when he discovered the Canon EOS-M.

Now, it’s important to point out that one could do a similar conversion with just about any cheap digital camera and save themselves a lot of money (the practically give those things away now). But, as any photography enthusiast knows, lenses are just as important as the camera itself (maybe even more so).

photo-31So, if you’re interested in taking nice pictures, you’ve got to have a camera with an interchangeable lens. Of course, if you’re already into photography, you probably already have a DSLR with some lenses. This was the case for [Gavin], and so he needed a cheap digital camera that used Canon interchangeable lenses like the ones he already had. After finding the EOS-M, the teardown and IR-blocking filter removal was straightforward with just a couple of hiccups.

When [Gavin] wrote his post in 2014, the EOS-M was about $350. Now you can buy them for less than $150 used, so a conversion like this is definitely into the “cheap enough to tinker” realm. Have a Nikon camera? The Nikon 1 J3 is roughly equivalent to the original EOS-M, and is about the same price. Want to save even more money, and aren’t concerned with fancy lenses? You can do a full-spectrum camera build with a Raspberry Pi, with the added benefit of being able to adjust what light is let in.

DIY Motion Control Camera Rig Produces Money Shots On A Budget

Motion control photography allows for stunning imagery, although commercial robotic MoCo rigs are hardly affordable. But what is money? Scratch-built from what used to be mechatronic junk and a hacked Canon EF-S lens, [Howard’s] DIY motion control camera rig produces cinematic footage that just blows us away.

moco_movinghead[Howard] started this project about a year ago by carrying out some targeted experiments. These would not only assess the suitability of components he gathered together from all directions, but also his own capacity in picking up enough knowledge on mechatronics to make the whole thing work. After making himself accustomed to stepper motors, Teensies and Arduinos, he converted an old moving-head disco light into a pan and tilt mount for the camera. A linear axis was added, and with more degrees of freedom, more sophisticated means of control became necessary.

Continue reading “DIY Motion Control Camera Rig Produces Money Shots On A Budget”

Seeing The Truly Invisible With DIY Shortwave UV Imaging

We’ve all seen how to peel IR filters off digital cameras so they can see a little better in the dark, but there’s so much more to this next project than that. How about being able to see things normally completely outside the visual spectrum, like hydrogen combustion or electrical discharges?

UV Electrical Discharge

[David Prutchi] has just shared his incredible work on making his own shortwave ultraviolet viewers for imaging entirely outside of the normal visible spectrum – in other words, seeing the truly invisible. The project has not only fascinating application examples, but provides detailed information about how to build two different imagers – complete with exact part numbers and sources.

UV-Viewer-SmallIf you’re thinking UV is a broad brush, you’re right. [David Prutchi] says he is most interested in Solar Blind UV (SBUV):

Solar radiation in the 240 nm to 280 nm range is completely absorbed by the ozone in the atmosphere and cannot reach Earth’s surface…

Without interference from background light, even very weak levels of UV are detectable. This allows ultraviolet-emitting phenomena (e.g. electrical discharges, hydrogen combustion, etc.) to be detectable in full daylight.

There is more to the process than simply slapping a UV filter onto a camera, but happily he addresses all the details and the information is also available as a PDF whitepaper. [David Prutchi] has been working with imaging for a long time, and with his sharing of detailed build plans and exact part numbers maybe others will get in on the fun. He’s also previously shared full build plans for a Raspberry Pi based multispectral imager, [David’s] DOLPHi Polarization Camera was a finalist in the 2015 Hackaday Prize, and he spoke at the Hackaday SuperConference about the usefulness of advanced imaging techniques for things like tissue analysis in medical procedures, and landmine detection for the purposes of cleaning up hazardous areas.

IPhone Polarizing Camera Solves Filter Orientation Problem Using Flash

One of last year’s Hackaday Prize finalists was the DOLPi, [Dave Prutchi]’s polarimetric camera which used an LCD sheet from a welder’s mask placed in front of a Raspberry Pi camera. Multiple images were taken by the DOLPi at different polarizations and used to compute images designed to show the polarization of the light in each pixel and convey it to the viewer through color.

The polarizer and phototransistor taped to the iPhone.
The polarizer and phototransistor taped to the iPhone.

[Dave] wrote to tip us off about [Paul Wallace]’s take on the same idea, a DOLPi-inspired polarimetric camera using an iPhone with an ingenious solution to the problem of calibrating the device to the correct polarization angle for each image that does not require any electrical connection between phone and camera hardware. [Paul]’s camera is calibrated using the iPhone’s flash. The light coming from the flash through the LCD is measured by a phototransistor and Arduino Mini which sets the LCD to the correct polarization. The whole setup is taped to the back of the iPhone, though we suspect a 3D-printed holder could be made without too many problems. He provides full details as well as code for the iPhone app that controls the camera and computes the images on his blog post.

We covered the DOLPi in detail last year as part of our 2015 Hackaday Prize finalist coverage. You can also find its page on Hackaday.io, and [Dave]’s own write-up on his blog.

 

Horrible Macro Rig Makes Good Photos

We love horrible hacks like this. It’s a lens and a ring of LEDs, taped to a cell phone. Powered through crocodile clips, also taped to the cell phone. There’s nothing professional here — we can think of a million ways to tweak this recipe. But the proof of the pudding is in the tasting.

Continue reading “Horrible Macro Rig Makes Good Photos”

First 360-degree Video From An Amateur Rocket?

Space. The final 360-degree frontier. These are the voyages of the Portland State Aerospace Society (PSAS), whose ongoing mission is to seek out new civilizations and launch rockets at them. For their latest adventure, they stuck a 360-degree video camera into their rocket. The resulting video is spectacular, from the pre-launch drama of an attack by a giant bee to the parachute release. It also works in Google Cardboard or Oculus Rift through the YouTube viewer.

The 360-degree video was made from video captured by five GoPro cameras stuck inside a custom-built module mounted inside the rocket body, then stitched together by PTGUI for the final video. The PSAS has been building modular rockets for some time, and this camera was mounted on their LV2 model. In this flight, the rocket reached an altitude of 4.7km (about 3 miles high), reaching a peak velocity of about 350 meters per second. That’s a pretty impressive height and speed, and you definitely get a good feeling for the dramatic climb of the rocket as it zooms up. This is some impressive stuff from a group of serious rocketeers who are boldly going where nobody has gone before…

Continue reading “First 360-degree Video From An Amateur Rocket?”

Make Your Own Infrared Camera On The Cheap!

This is a super fun hack that’s been around for ages — but now with cheap full 1080P HD camera availability, it’s probably a good time to make your own infrared camera!

It’s actually a very easy modification to perform. All cameras are capable of “seeing” infrared light, but for standard photography and video, you don’t want to see the infrared light. So most sensors just have an infrared filter in front of the sensor, to block out any excess infrared light. If you remove it … you have a converted infrared camera.

The following video shows exactly how to modify a camera to do this. It is a bit misleading though as it labels it as a thermal camera; and while it is seeing “infrared”, it’s not actually full thermal infrared, like a FLIR or Seek Thermal can see — it’s a mixture of visible and near infrared light. You will be able to see some hot things glowing through the camera, but not to the same degree as a real thermal imaging device. Continue reading “Make Your Own Infrared Camera On The Cheap!”