Ridiculously Over-Powered Quadrotor Spotlight Kills Battery, Blinds People

Flying quadrotors at night is awesome — but being in the dark tends to be a problem for not crashing them… Tired of not being able to get successful GoPro videos, [Diode] decided to strap a light to his quadrotor. A 3000+ lumen, 50W LED to be precise.

He found the 50W LED for $20 online with the driver! The only problem was it gets super hot. He salvaged a heat sink from an Xbox 360 which helps to keep the temperature at bay… but also increases the weight of the quad by a bit too much. Luckily his quadrotor is pretty powerful — but with the added weight, and 50W power drain, his flight time went from 15 minutes… to about 3 minutes.

Three of the most awesome minutes ever! Just watch the following video — the night-time possibilities are endless!

Continue reading “Ridiculously Over-Powered Quadrotor Spotlight Kills Battery, Blinds People”

An Android Controlled Arduino Drone

Drone

Who among us has not wanted to create their own drone? [Stefan] wrote in to tell us about a project for high school students, where a Styrofoam glider (translated) is converted into an Android (or PC) controlled drone.

[Stefan] tells us that the inspiration for this project comes from 100 years ago, when “steam-engines were THE thing” and children became introduced to modern technology with toy engines. “Today, mechatronic designs are all around us and this is an attempt to build the equivalent of the toy steam engine.” This project showcases how modern tools make it easy for kids to get involved and excited about hardware hacking, electronics, and software.

At the heart of the glider is an Arduino Pro Mini which communicates with either a computer or an Android phone via Bluetooth. It is especially interesting to note that the student’s used Processing to create the Android app, rather than complicating things by using Eclipse and Android Development Tools (ADT). While the more detailed PDF documentation at the end of the project page is in German, all of the Processingand Arduino code needed to build the project is provided. It would be awesome to see more Bluetooth related projects include a simple Android application; after all, many of us carry computers in our pockets these days, so we might as well put them to good use!

Do you have any well documented projects that introduce young and budding engineers to hardware or software hacking? Let us know in the comment section or send us a tip!

Thrust-Vectoring Hovercraft On A Budget

FANEWZ5HRH0XXYR.MEDIUM

Looking for a fun little experiment in thrust vectoring? [Saral Tayal] has come up with what he thinks is the first style of thrust vectoring hovercraft.

A typical hovercraft uses one or two drives, one to hover, one to direct movement — or one for both, diverted to the two outputs. [Saral’s] toy hovercraft uses two, but unlike traditional designs, instead of having a rudder on the back to direct the airflow for steering, he steers the entire fan assembly. On a full size hovercraft, this could be a lot of fun.

It’s a pretty simple project that you could quite easily build on a weekend — if you’ve got RC parts kicking around, even easier! He’s using two brushless motors with ESCs, a 9g servo, and a small RC transmitter/receiver. The props come from a regular RC plane — just pick one suitable for the motor being used. Depending on what you have on hand, this project will be under $100 to build. The rest is mostly foam-board, balsa wood, and glue.

Check out the following video to see how it hovers!

Continue reading “Thrust-Vectoring Hovercraft On A Budget”

Free Falling Quadcopter Experiments End With Splat

Don’t get too attached to the great picture up above, as the quad shooting it was in a death plunge when the frame was snapped. There’s just something tempting about free fall. Nearly every tri/quad/hex/multicopter pilot has the impulse to chop the throttle while flying around. Most quadcopters are fixed pitch, which means that as power drops, so does control authority. When power is cut, they fall like stones. A quick throttle chop usually results in a few feet of lost altitude and a quickened pulse for the pilot. Cut power for much longer than that, and things can get really interesting.  [RcTestFlight] decided to study free fall in depth, and modified a test bed quadcopter just for this purpose.

First, a bit of a primer on free-falling quadcopters and their power systems.  Quadcopters always have two motors spinning clockwise, and two spinning counterclockwise. This configuration counters torque and allows for yaw control. Most large quads these days use sensorless brushless motors, which can be finicky about startup conditions. Brushless controllers are generally programmed to kick a motor into spinning in the proper direction. If a motor is spinning in reverse at several hundred RPM, things can get interesting. There will often be several seconds of stuttering before the motor starts up, if it starts at all. The controller MOSFETS can even be destroyed in cases like this.

When a quadcopter loses power, the motors slow down and thrust drops off. The quad begins to drop. As the falling quadcopter picks up speed, the propellers begin to spin (windmill) due to the air rushing up from below. If the quadcopter started its fall in a normal attitude, all four of  the propellers will rotate reverse of its normal direction.  The now spinning props will actually act as something of an air brake, slowing the fall of the quad. This is similar to a falling maple seed, or autorotation in a helicopter.  The spinning blades will also act as gyroscopes, which will add some level of stabilization to the falling quadcopter. Don’t get us wrong – the quadcopter can still be unstable as it falls, generally bobbing and weaving through the air. None of this is a guarantee that the quad won’t tip over onto its back – which will reverse the entire process.  Through all of this bobbing, weaving, and falling the flight controller has been along for the ride. Most flight controllers we’ve worked with have not been programmed with free fall in mind, so there is no guarantee that they will come back on-line when the throttle is rolled on. Thankfully many controllers are open source, so testing and changes are only a matter of risking your quadcopter.

Continue reading “Free Falling Quadcopter Experiments End With Splat”

Weaponized Quadrotor Upgrades

Today we’re looking at a few fun hacks, although they are perhaps a bit ill-advised. What’s the craziest thing you could strap to a quadrotor? Rockets? Lasers? Turns out… they’ve both been done already.

First up is [Ramicaza’s] firework launching quadrotor. The drone is stabilized using the ArduPilot Mega 2.6, and it carries a pair of “rockets” which are ignited by a pair of steel elements. An ATtiny analyzes the auxiliary radio channel’s PWM signal which controls the relays that power the elements. He’s tested it high up in the sky, so he’s actually being pretty safe about it.

Next is [JLaservideo’s] laser quadrotor. He’s taken a RC controller of a cheap toy to add wireless capabilities to his Arduino Uno. He’s re-routed the original RC toy’s motor wires to an input on the Arduino which in turn activates a 5V relay that powers the 1W laser. It looks awesome thanks to the bright beam — we just really hope he’s wearing proper eye protection, as a laser of that power can do some serious damage to your retinas!

Stick around after the break to see both quadrotors in action!

Continue reading “Weaponized Quadrotor Upgrades”

Autonomous Quadcopter Fits In The Palm Of Your Hand

[Horiken Engineering], which is made up of engineering students at the department of aerospace at the University of Tokyo have developed an autonomous quadcopter that requires no external control — and its tiny. By using two cameras and a sonar sensor, the quadcopter is capable of flying by itself due to its ability to process the data from the on-board sensors. To do the complex data processing fast enough to fly, it is using a Cortex-M4 MCU, a Spartan-6 FPGA, and 64MBs of DDRSDRAM. It also has the normal parts of a quadcopter, plus gyros, a 3D printed frame and a 3-axis compass. The following video demonstrates the quadcopter’s tracking ability above a static image (or a way point). The data you see in real-time is only the flight log, as the quadcopter receives no signal — it can only transmit data.

Continue reading “Autonomous Quadcopter Fits In The Palm Of Your Hand”

The World’s First Autonomous Flapping MAV

Screen Shot 2013-12-22 at 7.57.23 PM

[Ferdinand] sent in a tip about the very cool DelFly Explorer, built by researchers at Netherlands’ Delft University of Technology, which is claimed to be the world’s first autonomous, flapping micro air vehicle. While it doesn’t fly like a typical ornithopter, the specs will convince you not to care. It has an 28 cm wingspan and weighs 20 grams, which includes motors, a battery, two cameras, and an autopilot. The autopilot uses accelerometers and a gyroscope, plus a barometer for altitude measurement. You can see the on-board video at the 35-second mark on the video (after the break). They are incredibly noisy images, but apparently the researchers have come up with some algorithms that can make sense of it.

Put it all together, and you have a machine that can take off, maintain altitude, avoid obstacles, and fly for nine minutes. We’ve seen a cool ornithopter design before, and even a thrust vectoring plane, but this surpasses both projects. It’s pretty incredible what they have been able to fit into such a small design.

Continue reading “The World’s First Autonomous Flapping MAV”