Quadcopter Brain

quadcopter-brain

This project is the warm center of [Alan Kharsansky’s] thesis in Electronic Engineering. It’s an all-in-one control board for a quadcopter. This is the second iteration of the board, the first version he actually etched himself. As you can see after the break the firmware is not quite ready for prime-time. But that doesn’t stop us from appreciating the design choices he’s made.

You can see the effort he made to keep the board symmetrical which will help when it comes time to balance the aircraft. At the center of the PCB is the jewel of the sensor array, a combination accelerometer and gyroscope. This location will help easy the trouble of designing PID algorithms to drive the four propellers. Also included in the sensor array is a magnetometer for navigation, and a barometric pressure sensor which can be used as an altimeter. There are four multipurpose connectors used to drive the motors and provide feedback to the boards. He also included two more sets of pads on the board (without their own connectors) in case he wants to add more motors in the future. The quadcopter can be controlled from a base station via the XBee module.

Continue reading “Quadcopter Brain”

The Burrito Bomber

Burrito Bomber

The Burrito Bomber, created by the folks at Darwin Aerospace, claims to be “the world’s first Mexican food delivery system.” The delivery process starts with the customer placing an order through the Flask based Burrito Bomber webapp. The customer’s location is grabbed from their smartphone using the HTML5 Geolocation API and used to generate a waypoint file for the drone. Next, the order is placed into a delivery tube, loaded onto the drone, and the waypoint file is uploaded to the drone. Finally, the drone flies to your location and drops the delivery tube. A parachute deploys to safely deliver the tasty payload.

The drone is based on a Skywalker X-8 airframe and the Quantum RTR Bomb System. The bomb system provides the basic mechanism to hold and drop a payload, but Darwin Airspace designed their own 3D printed parts for the delivery tube. These parts are available on Thingiverse. The drone is controlled autonomously by ArduPilot, which uses the webapp’s waypoint output to guide the drone to the target and release the payload.

Unfortunately, this can’t be a commercial product yet due to FAA regulations, but the FAA is required to figure out commercial drone regulations by 2015. Hopefully in 2015 we’ll all be able to order burritos by air.

For all the source and models, check out the group’s Github. There’s also a video of the bomber in action after the break.

Continue reading “The Burrito Bomber”

Turning Four Smaller Helicopters Into One Larger Quadcopter

copter

There’s a reason we’ve seen a menagerie of quadcopters over the past few years – the key piece of any quadcopter build is an inertial measurement unit. Historically a very complicated and expensive piece of kit, these IMUs came down in price a few years back, allowing anyone with a few dollars in their pocket and a handful of brushless motors to build a four-bladed drone in their workshop.

[Starlino] built a few quadcopters, but he wanted to shy away from IMUs and get most of the mass of his new ‘copter over the center of the chassis. He came up with a design he calls the quadhybrid that can be built out of a quartet of those cheap 3-channel helicopter toys.

Most of the lift for [Starlino]’s quadhybrid comes from a pair of coaxial rotors from a Syma 001 3-channel helicopter toy. Anyone who has played with one of these toy helicopters knows how stable they are; if the tail rotor breaks, you’re left with a helicopter that can only go up and down.

To give his quadhybrid a few degrees of freedom, he attached four tail rotors from 3-channel helis to a few booms laid out in a cross pattern. By taking the receiver out of a 4-channel helicopter and adding his own controller board, [Starlino] made each of the tail rotors control the pitch and roll of the craft.

In the video after the break, you can see the quadhybrid is amazingly stable even without an IMU and surprisingly agile. As [Starlino]’s ‘copter can be made out of replacement parts for cheap 3-channel helis, we’ll expect a rush on these tail motors at your favorite online RC retailer very shortly.

Continue reading “Turning Four Smaller Helicopters Into One Larger Quadcopter”

Raspberry Pi Quadcopter

[youtube=http://www.youtube.com/watch?v=TjXvzMdf8Nk&w=470]

It was bound to happen sooner or later, but that doesn’t diminish the awesomeness of [Matthew]’s Raspberry Pi-powered quadcopter.

[Matthew]’s quadcopter is similar to all the other flying drones we’ve seen before with one important difference – all the processing, from reading the gyroscopes to computing exactly how much power to give each motor – is handled by a Raspberry Pi. This task is usually the domain of a microcontroller, as these calculations need to happen in real-time. The Linux distro [Matt] is running on his Pi has a lot more overhead than a simple AVR or ARM microcontroller, so doing everything that needs to be done in real-time isn’t guaranteed. With a bit of clever programming, [Matthew] managed to make sure all the necessary tasks were taken care of in time. It’s still not a real-time operating system, but for this project at least, it’s good enough.

Since the Raspberry Pi in [Matthew]’s quadcopter is much more powerful than a microcontroller, there’s plenty of head room to SSH into the ‘copter while it’s flying. There may even be enough processing power to stream video to a web server; we honestly can’t wait to see what [Matthew] does with his flying Linux computer in the future.

You can check out [Matthew]’s code over on the git or watch a few flight test videos over on his youtube.

 

Controlling A Quadcopter With A Leap Motion

A few folks over at National Instruments going under the name LabVIEW Hacker have gotten their hands on a Leap Motion dev kit. The Leap is an interesting little input device designed to track fingertips in 3D space, much like a Kinect but at much higher resolution. Needing something to show off their LabVIEW prowess, these guys controlled their office AR Drone with the Leap, making a quadcopter controller that is completely touchless.

Building on their previous AR Drone hack, the LabVIEW team spent the better part of a day adding wrappers around the Leap SDK and adding in control for their RC quadcopter. Now, simply by moving their fingertips over the Leap sensor, they can control their office quadrotor using a very high-resolution 3D scanner.

Video after the break.

Continue reading “Controlling A Quadcopter With A Leap Motion”

Using UAVs To Find Mannequins Lost In The Outback

Every other year the Australian Research Center for Aerospace Automation, the government of Queensland, Australia  and other government and research institutions hold a contest to develop technology for unmanned aerial vehicles for the wastes of central Australia. Canberra UAV – a group of autonomous drone enthusiasts from the Make, Hack, Void hackerspace – took part in this UAV challenge this year. They ended up with one of the most successful UAVs to every compete, and while they didn’t quite finish the competition they were one of the most successful entries to date.

The goal of the Search and Rescue Outback Challenge is to take off from a landing strip, search for a mannequin named Outback Joe, and deliver 500 ml of life-giving water via air drop. Out of 72 teams entered in to this year’s Outback Challenge, only 6 were allowed to take off – safety restrictions, don’t you know – and all but two hadn’t been destroyed via ‘rapid, unplanned descent’ during qualifications.

UAV Canberra was the only team able to search the entire 5 nautical mile radius search area with their cameras and find Outback Joe. Contest judges gave them permission to drop their payload, but unfortunately the bottle of water was snagged on the engine.

In the many iterations of the Search and Rescue Outback Challenge, UAV Canberra is only the second team to locate a mannequin in the outback, and the first to do it autonomously. A shame, then, that they were unable to claim a victory, but we’ll look forward to their entry in the next Search and Rescue competition.

You can check out a few videos of the Canberra UAV team’s flights after the break.

Continue reading “Using UAVs To Find Mannequins Lost In The Outback”

atmos

Autonomous Plane? Quadrotor? Both? Meet The ATMOS!

If you’ve been trying to decide between building an autonomous quadcopter or a fixed wing UAV, you may not have to choose anymore.  [Team ATMOS] from Tu Delft University in the Netherlands, has developed a UAV that can autonomously transition from quadcopter flight to that of a fixed-wing aircraft. Although the world has seen several successful examples of transitioning-flight or VTOL aircraft, team [ATMOS] claims to have made the first autonomous transition of this type of craft.

This UAV was featured in their school newspaper, which provides a write-up about the work that went into creating this hybrid UAV. When you’re done with that, be sure to check out the two videos after the break. The first shows the [ATMOS] taking off vertically and flying off as a flying-wing fixed aircraft. The second video shows this and other UAVs in the [DARPA] competition that it was designed for. Fast forward to 2:24 to see this aircraft do a fly-by.

http://www.youtube.com/watch?v=81NvfLFzhqQ

Thanks for the tip [Dirk]!