Building A DIY GPS Cube

Originally, [Karman] wanted to build a speedometer for his bike. Feature creep makes fools of us all, so after a month of work [Karman] had a  GPS-enabled cube that tells him his current latitude and longitude, current time, course, direction and speed.

[Karman]’s GPS cube uses a cheap GPS module, Arduino Mini Pro, a magnificent OLED display, and a LiPo battery salvaged from a first gen iPod nano. Surprisingly, the build is very clean – there are no wires, headers, or random epoxy globs sticking out everywhere. The entire build is just a bit larger than one cubic inch, allowing [Karman] to carry around the power of a GPS device in his pocket.

The code for [Karman]’s GPS cube uses the TinyGPS library for Arduino, that has a few great functions that track the number of satellites visible and report the current time. Now all that’s left to do is fabricate a case for this awesome little project. As always, video demo after the break.

Continue reading “Building A DIY GPS Cube”

Those USB TV Tuners Used For SDR Can Also Grab GPS Data

Talk about versatile hardware. These inexpensive TV tuner dongles can also grab GPS data. You may remember seeing this same hardware used as a $20 option for software defined radio. But [Michele Bavaro] decided to see what other tricks they could pull off.

Would it surprise you that he can get location data accurate to about 20 centimeters? That figure doesn’t tell the whole story, as readings were taken while the dongle was stationary for three hours, then averaged to achieve that type of accuracy. But depending on what you need the data for this might not be a problem. And [Michele] does plan to implement real-time GPS data in his next iteration of the project. He plans to use an SDR acquisition algorithm to measure doppler shift in accounting for the slow clock speed of the dongles compared to standard GPS receivers. We can understand how that would work, but we’re glad he has the skills to actually make it happen because we’re at a loss on how the concept could be implemented.

[via Reddit]

Using GPS To Stay Aware Of Red Light Cameras

red-light-camera-alerter

Depending on how you view them, red light cameras are a great way to get people to drive carefully, or an utter nuisance. We agree with the latter opinion, as does [Dave], so he built a handy little device that alerts him when he’s about to approach one of these intersections.

His Red Light Camera Alerter is based around an Atmega 328P sporting the Arduino bootloader. The micro obtains GPS coordinates while [Dave] is driving, comparing his current location with a table of all known red light intersections in the area. As he nears a red light camera, the status LED changes colors from blue to yellow to red as he gets closer, making it easy to keep aware of his situation. He also included an Adafruit OLED display in his device, which relays his speed, GPS coordinates, heading, and actual distance from the red light in real time.

While [Dave] admits that he doesn’t really have a need for the alerter as there are only a couple located in his immediate vicinity, he says it was a fun and easy way to get some experience with using GPS sensors in his projects. He doesn’t have any video of it in action, but you can find the code he uses to drive the alerter on his blog.

Hacking The Green Goose For Fun And Profit

[Troy] recently got his hands on a greengoose starter kit and like any HAD reader would do, proceeded to probe it mercilessly.

The greengoose appears to be some sort of location-tracking device which reports back to a server on the position and location of radio transmitters relative to it. [Troy] managed to not only get the base-station’s firmware, but to also hack it and greengoose’s data to his own server. As if that wasn’t good enough he broke down the packet structure for us. Good job [Troy].

Looks like the greengoose could be a fun tool for anyone interested tweeting the whereabouts of their cat, or checking if the toilet seat lid is down. Let’s see what people come up with.

A Talking Reverse Geocache Puzzle Box

Here’s a talking reverse geocache puzzle box which [Erv Plecter] built as a wedding gift for his friends. The box itself isn’t really the gift, but a surprise delivery system for a collection of cash from the couple’s circle of friends to go toward the honeymoon. We think this is about fifty times more fun that getting a fat envelope of bills. Who would really expect to find cash inside once you finally get to the target location?

Unlike the other geocache box we saw recently, this one has no display to show you clues to the destination. Instead, it plays back audio clips which [Erv] recorded himself. They’re quite tongue-in-cheek which is another nice personal touch. The pin seen protruding out of the right side of the box can be removed to play a clue and check the location. It’s connected by a little chain to a 5 euro-cent piece which conceals an emergency release mechanism for the lid. The device is powered with a Lithium battery and can be recharged without opening the box via a USB port in the side.

We’ve embedded the video demonstration of the box after the break.

Continue reading “A Talking Reverse Geocache Puzzle Box”

Reverse Geocache Box Looks Great And Packed With Features

[Ranger Bob] crafted this great looking Reverse Geocache box. Our favorite feature is the black piece of acrylic on top. It’s laser cut (not sure if the letters are engraved or not) and gives a great finished look while hiding a couple of things at the same time.

The orange box is a metal cash box, and there’s a smooth indentation in the lid where the handle resides when not being carried. [Bob] removed the handle and mounted the GPS module in that void. But there’s also an OLED display mounted next to it. As you can see in the demo video after the break, the screen is bright enough to be seen clearly through the smoky acrylic covering that depression.

This project gave [Bob] the chance to order his first professionally made circuit board. He did the design in Eagle, managing to keep within the 5cmx5cm limits of Seeed Studio’s least expensive Fusion PCB option. The board hosts the PIC 18F87J50 responsible for handing the screen, GPS module, input button, and USB port. Power comes from an internal Lithium battery.

We’ve featured a lot of Reverse Geocache boxes and they’re still one of our favorite projects because so much love goes into the design and build process. Here’s another one that we chose randomly for your amusement.

Continue reading “Reverse Geocache Box Looks Great And Packed With Features”

See Where Socks Has Been Using A GPS Tracking Collar

[Buxtronix] wanted to know where his cat (named Ash, but we thought Socks sounded much more cliché) was going when on the loose. He designed a GPS tracking collar and a way to map the data it collects.

The hardware actually turns out to be very simple. He needed a GPS module to gather location data, and a way to store that information having decided that live broadcast was not feasible. He hit SparkFun because they have a GPS module that is small enough for a cat collar, and outputs data with one serial pin. Unfortunately this module is no longer available, but if you have a similarly sized replacement let us know in the comments. Data capture is made easy by this device, you just need to record the serial data as it comes down the pipeline. [Buxtronix] used an OpenLog board as it dumps the data onto an SD card. When [Ash] returns from his roaming, [Buxtronix] grabs the SD card, and uses a Python script to convert the NMEA data to KML format which can be overlaid on Google Earth and Google Maps.