Remote Servo-controlled Lightswitch

remoteServoLightSwitch

We frequently get home automation tips, many of which have simple circuit-based on/off control for lights. [Paulo Borges] has created something quite different, however, with his in-the-wall servo-controlled light switch. This build forgoes the need of any relay to switch mains power, and because it’s physically flipping your switch, provides a distinct advantage over other builds that require a phone or tablet interface: you can use your switches as you normally would.

[Paulo] picked up a rocker-type switch at the local hardware store and carefully pried off the large, flat switch plate to notch out a small hole at its fulcrum. He then carefully shaped a piece of 12 gauge wire to provide a pivot point for the servo. His choice to use wire here seems to be entirely to provide a sturdy yet bendable component that functions mechanically rather than electrically. A small 9G servo fits to the back of the switch’s housing, and the servo’s arm connects up to the previously attached 12 gauge wire. He pieced together the remote control feature with an RF link kit with an inexpensive 433mhz Code duplicator from eBay.

[Paulo] explains that his Instructable is simply an overview rather than a step-by-step guide, so if you’re eager to reproduce this hack you’ll have to work out the code and the remote control portion yourself. He also acknowledges the biggest remaining hurdle: finding space in the wall to shove all the microcontroller guts. Check out a couple of videos of the switch after the break, and remember, there’s always the option of doing away with all light switches.

Continue reading “Remote Servo-controlled Lightswitch”

Humidity Activated Bathroom Fan

bathroom humidifier

[Andrea] recently moved into an apartment with a few of his friends. Unfortunately the bathroom lacks one of the most important things — A fan. Or at least a window!

Using the case of an air freshener, a simple DHT11 Humidity/Temperature sensor, an LCD, a 12V fan, and ATmel328 microcontroller, he created this handy gadget.

When the humidity in the bathroom passes the 50% threshold, an LED flashes to prompt the user to open the door. After a short delay, one of the transistors flips causing the moist air to circulate out of the room.

We’re surprised the little 12V fan is powerful enough to clear the room, but apparently it helps a lot and can clear the room in less than 20 minutes.

To see it in action, stick around after the break.

Continue reading “Humidity Activated Bathroom Fan”

Interactive Office Conference Table (Tableduino)

table_large

The folks over at One Mighty Roar have been hacking their office lately, and there have been some pretty creative results! The latest development is this interactive office conference table.

The table itself is made of fine American walnut and is quite appealing, but they wanted it to be a bit flashier than that.

The center square of the table features the company logo lit up by RGB LED’s, and the whole thing lifts out of the table using a small hydraulic actuator. This reveals some power outlets and ethernet jacks, but unfortunately the current system doesn’t have any safety precautions to make sure it doesn’t close on cables…

If that wasn’t enough, they wanted to automate the whole thing too, so there are also ultrasonic range sensors underneath which can detect when people are present — the end goal is to have the LEDs change color depending on how many people attend a meeting. This is all controlled by an Arduino Uno — but we have to wonder, isn’t there a better way for detecting if people are sitting down? The project is far from done though, so there will be many more features to come.

One of their other cool office hacks includes their interactive office sign that is controlled both by SMS or web app.

Arduino-based Temp Control Via SMS

smsTempController

As connected as we are, reliable and affordable internet is still a luxury in the far reaches. [kohleick’s] country home is not just remote; with temperatures dropping to -30C in the winter, it’s practically Arctic. His solution for controlling the thermostat from afar was to take advantage of the GSM network and implement a SMS-based heater controller. The unit typically operates in “antifreeze mode,” but sending a simple text message prior to visiting causes the heater to kick it up to a more comfortable setting for your arrival. Daily logs report the system’s status, and an alert will trigger when temperatures fall below a set limit, thus indicating potential faults with the heater.

The build uses a Freeduino paired with an external GSM modem for communication and an LCD to display current status and menus, which users access via three buttons on the side of the picture frame. [kohleick] connected two temperature sensors: one directly to the Freeduino’s shield and a second outside the house. After the temperature sensors detect deviance from the set point, or upon SMS instruction, the Freeduino will crank up the heat through a 5V relay attached to the home’s boiler. Head over to the Instructables page linked above for a bill of materials, schematics, and the code. The Siemens GSM modem in this build is nothing to worry about, but be careful if you try to reproduce this project with an Arduino GSM shield, or your house might really heat up.

Zero Gravity (sort Of) On A Budget

zeroGravRoom

At $250,000, Virgin Galactic is probably out of most people’s price range; even reduced gravity flights run $5k. You may be in luck, though, as [Justin] and his friends have built a spinning room for $350 (Warning: loud noise @ beginning) that can turn your world upside down. The video provides a time-lapse of the build, but you’ll probably want to skip ahead 5 minutes in for the real fun.

It may not be anti-gravity, but holding onto furniture to keep from flying into the ceiling looks pretty entertaining. The room works like the fairground favorite “Gravitron” ride turned sideways. 2 forklifts support a massive wooden cube, which includes familiar features from home: drywall, flooring, and some furniture. [Justin] managed to borrow two car wheels, which he mounted in the middle of the walls on opposing sides of the cube. Two casters support each rim, and the forklifts hold the casters just high enough to allow a few friends to manually sling everything around.

Continue reading “Zero Gravity (sort Of) On A Budget”

Classic PDA Finds Second Life As A Network Touch Screen Display

pocketviewer

[Tomas Janco] had an old Casio Pocket Viewer PDA collecting dust. Rather than throw it away, He decided to re-purpose it as a display for time, weather, and the current status of his garage door.

The Casio Pocket Viewer was a competitor to the Palm Pilot. The two systems even shared the same LCD resolution – 160×160 monochrome. [Tomas’] particular model is an S660, sporting 6 megabytes of ram and an NEC V30MZ (Intel 8086 compatible) processor. Similar to Palm, Casio made an SDK freely available.

The SDK is still available from Casio, and [Tomas] was able to get it running on his PC. Development wasn’t without pitfalls though. The Pocket Viewer SDK was last updated in April of 2001. Software is written in C, but the then new C99 standard is not supported. The SDK does include a simulator and debugger, but it too is not as polished as todays systems – every simulator startup begins with setting the clock and calibrating the touch screen. Keep reading after the jump to learn about the rest of the hurdles he overcame to pull this one off.

Continue reading “Classic PDA Finds Second Life As A Network Touch Screen Display”

Tooth Fairy Goes Pneumatic

pneumaticToothFairy

Kids’ fantasy figures are long overdue for some tech upgrades, so MAKE’s [Jeff Highsmith] carved a few holes in the walls and built a pneumatic transport system for his children to deliver their teeth to the Tooth Fairy. The project uses a system of 1.5″ PVC pipe with a central vacuum in the attic and two endpoint stations, one in each child’s room. Alternating which station has the closed valve and open door dictates the airflow path and shuttles a small plastic travel bottle from one station to the next.

Each station has its own iPhone interface that sends data to a Raspberry Pi and relays information, including a simulated map indicating the travel path taken by the tooth. Apart from controlling the vacuum via one of the Pi’s GPIO, the phone serves primarily as a visual distraction for the children while one parent sneaks off into the other room and replaces the tooth with some pocket change. [Jeff] made sure to add a locking door on each station to limit access and hopefully keep the mystery alive.

Watch his son’s face light up with sheer glee at the whole event in the video below, and regret that your childhood happened before the maker revolution. Then celebrate your adulthood with a beer fetching robot.

Continue reading “Tooth Fairy Goes Pneumatic”