Hackers Measure Cable Lengths With Time Domain Reflectometers

[android] has built up a fast edge pulse generator for time domain reflectometry (TDR). TDR is a neat technique which lets you measure cable lengths using electrical signals and can also be used to locate faults within the cable.

TDR works by sending a pulse down the cable. When the pulse reaches the end of the unterminated cable it is reflected back to the source. By monitoring the delay between the original pulse and its reflection you can determine the length of the cable. We’ve seen projects that use TDR before, and it’s often used in telecoms industry to locate faults in long cable runs.

You can try TDR in your lab using only a scope to observe the delay and a function generator to create the pulse. However, the technique works a lot better with pulses that have very fast rise times. So [android] built a fast edge pulse generator based on [w2aew]s design. Then added googly eyes for good measure. His build works great and is a nice demonstration of the technique.

Hacking Cheap Chinese PID Temperature Controllers

[Harvs] hacked a cheap PID controller he found on eBay to improve its performance. The controller originally used a K-type thermocouple but lacked cold junction compensation. As thermocouples only provide a differential measurement between the measurement junction and cold junction, this meant the controller was assuming the cold junction was at room temperature, and would in many cases be significantly inaccurate. The system also used a no-name brand Chinese microcontroller making firmware hacks impractical.

[Harvs] decided that even with cold junction compensation a K-type thermocouple wasn’t ideal for his application anyway, and designed a replacement PCB to interface to the display and power supply. The new PCB is based around a Cypress PsoC (a popular choice for its great analog functionality) with a DS18B20 temperature sensor. At the lower temperature ranges [Harvs] is interested in the DS18B20 is far more accurate and easy to use than the thermocouple.

Though the project hasn’t been updated recently, [Harvs] was planning on adding an ESP8266 for remote monitoring and control. Great work [Harvs]!

Thanks to Peter for the tip.

Get Biohacking With A DIY CO2 Incubator

The [Pelling Lab] have been iterating over their DIY CO2 incubator for a while now, and it looks like there’s a new version in the works.

incubator3

We’ve covered open source Biolab equipment before including incubators but not a CO2 incubator. Incubators allow you to control the temperature and atmosphere in a chamber. The incubator built by the [Pelling Lab] regulates the chambers temperature and CO2 levels allowing them to culture cells under optimal conditions.

While commercial incubators can cost thousands of dollars the [Pelling Lab] used a Styrofoam box, space blanket, and SodaStream tank among other low cost parts. The most expensive component was a CO2 sensor which cost $230. The rig uses an Arduino for feedback and control. With a total BOM cost of $350 their solution is cost effective, and provides an open platform for further development.

The original write up is full of useful information, but recent tweets suggest a new and improved version is on the way and we look forward to hearing more about this exciting DIYBio project!

Retro TO-3 Switching Voltage Regulator

Restoring old gear often means replacing unavailable parts with modern equivalents. [Alex Eisenhut] needed to replace some old TO-3 voltage regulators and decided to make an authentic-looking switching power supply replacement. These three pin metal cans were very common, especially the LM340 5V regulator which was, of course, a linear regulator. Today, you are more likely to see a 7805 in a TO-220 case or something surface mount for a comparable linear regulator.

As you might expect, the board uses surface mount components. [Alex] used Mill Max machine pins to match the original regulator footprint and calls the regulator Ton3y. He plans to cover it up with a 3D printed lid, but it seems a shame to hide the fine PCB work.

In the pictures, you can see that the machine pins are a tight fit. [Alex] used a hammer to lightly tap them into place. Of course, the original TO-3 regulators were linear and would generate a lot of heat. The Ton3y, as you’d expect from a switching power supply, runs cool (according to the scientific measurement made with [Alex]’s pinky finger) and surely has a wider input voltage range and more output current capacity.

We’ve seen replacement switching regulators before, but this one is really a work of art.

Self Built Interferometer Measures Nanometer Displacement

[jrcgarry] hacked together this awesome interferometer which is able to measure displacements in the nanometer range. Commercial interferometers are used in research labs to measure tiny displacements on the nanometer scale, and can cost tens of thousands of dollars. [jrcgarry] used beam splitters from BluRay drives, mirrors from ebay and a 5mw laser diode.

We’ve covered the use of interferometers before. But never an instrument built from scratch like this. Interferometers exploit the wave-like nature of a beam of light. The beam is split and sent down two separate paths, where the beams bounce off mirrors to return to the beam splitter to be recombined. Because of its wave light nature the beams will interfere with each other. And as the beams have traveled different distances they may be in or out of phase. Resulting in either constructive (brighter) or destructive (darker) interference.

Because the wavelength of light is on the order of 100s of nanometers, by observing the interference patterns you can monitor the displacement of the mirrors with respect to each other at nanometer resolution. [jrcgarry] doesn’t use the interferometer for any particular application in this tutorial but it’s a great demonstration of the technique!

Puzzle Box

Puzzle Box Is Rigged To Blow

[Sande24] needed a gift for his father’s birthday. He decided that rather than simply give his father the gifts, he would present his father with a unique challenge. The gifts are locked inside of a multi-stage puzzle box. This isn’t your average puzzle box though. This one is rigged to blow.

The puzzle box was designed to test his father’s reflexes, mind, and luck. The finished product looks sort of like a wooden crate made from particle board. The box contains three levels, each with its own gift and its own task to be completed.

With the lid opened, the first compartment and puzzle is revealed. Inside of the compartment were a new pair of gloves, meant to protect the father’s hands when working on the puzzles. The first puzzle is built into a sheet of wood with several custom-made levers. The levers must be moved into position in order to remove the wooden sheet and reveal the next level.

The first lever triggers a home-made detonator that eventually lights a series of fireworks placed around the box. You need to solve the puzzle box fast enough to prevent the fireworks from destroying the gifts that lay inside. [Sande24] was unable to legally purchase fuses where he lived, so he had to make his own.

The second level held a gas mask, also meant to protect the father from the booby traps of this mysterious box. This level, also made from a sheet of wood, has nine squares drawn on it. Each square is labeled with a different number which goes into solving a mathematical function (x^5-25x^4+233x^3-995x^2+1866x-1080 = 0). The solution to the function would reveal the safe path to be used to cut the wooden platform in half. Unfortunately [Sande24’s] father cut the wrong squares and released a huge amount of vinegar into the box. Oops.

The bottom level contained the final puzzle and the locked treasure compartment locked with an ordinary padlock. To find the key, another puzzle had to be solved based on a series of wooden levers labeled with different shapes. The shapes provided clues to the order in which the levers should be pulled. Once the levers were moved into position, two compartments were unlocked. One of them contained the key to the treasure box. The other contained another booby trap which would set off more fireworks, destroying the final gift of four cans of Kuld beer. That’s a lot of work to get a a few cans of frothy beverage!

[Thanks Ellery]

This Little Amiga Still Runs School District’s HVAC

It’s the rare tech worker that manages a decade in any one job these days – employee loyalty is just so 1980s. But when you started your career in that fabled age, some of the cultural values might have rubbed off on you. Apparently that’s the case for an Amiga 2000 that’s been on the job since the late ’80s, keeping the heat and AC running at Grand Rapids Public Schools (YouTube video link.)

The local news story is predictably short on details and pushes the editorial edge into breathless indignation that taxpayer dollars have somehow been misspent. We just don’t see it that way. “If it ain’t broke, don’t fix it,” is somewhat anathema to the hacker ethos. After all, there’s no better time to “fix” something than when it’s working properly and you can tell if you’ve done something wrong. But keeping an important system running with duct tape and wire ties is also part of the hacker way, so we applaud [Tim Hopkins] and his colleagues at the GRPS Facilities and Operations Department for their efforts to protect the public purse. And a round of applause is also due not only to the Amiga design team, who produced a machine that can run for nearly three decades, but also to Johnson Controls, whose equipment – apparently a wide area radio modem linking the HVAC systems in the district’s buildings – is being run by The Little Amiga That Could. Sounds like they built stuff to last way back when.

So when this machine is finally retired, here’s hoping they give it a good sendoff. Perhaps we’ll see it with some other Amigas at some future Vintage Computer Festival. Or maybe it’ll be one of those active retirees and start a career in the music industry.

[Thanks Thinkerer!]