Rubber Band “Slide Rule” Doesn’t Slide, But Rotates

Around here we mostly enjoy slide rules. We even have our own collections including some cylindrical and circular ones. But [Mathologer] discusses a recent Reddit post that explains a circular slide rule-like device using a wheel and a stretchable rubber band. While it probably would be difficult to build the actual device using a rubber band, it can do wonders for your understanding of logarithms which still show up in our lives when, for example, you are calculating decibels. [Dimitri] did simulate the rubber band for you in software.

The idea is that a perfect rubber band has numbers from 0 to 10 evenly marked on it. As you rotate a wheel attached at the 10 mark, the rubber band stretches more and more. So the 10 and the 9 have relatively little space between them, but the 1 and the 2 are much further apart. The wheel’s circumference is set so that the 1 will exactly overlay the 10. What this means is that each spot on the wheel can represent any number that differs only by a decimal point. So you could have 3 mean 0.03, 300, or — of course — 3. Of course, you don’t need to build the wheel with a rubber band — you could just mark the wheel like a regular circular slide rule.

Continue reading “Rubber Band “Slide Rule” Doesn’t Slide, But Rotates”

Quick-Swap Socket For Stemma QT Experiments

[kmatch98] shares a quick hack with us over at Hackaday.io – a 3D-printed socket for Adafruit Stemma QT-based I2C modules. Since Adafruit has standardized the dimensions for their Stemma QT boards, it’s possible to make a socket that would fit many different sensors at once, where the board just slides in.

This reminds us of sci-fi datadisks, or, thinking of something more grounded in reality, game console cartridges – except that here, the fun you’re having is from exploring all the different devices you can get to speak I2C. To make such a socket, you only need to 3D-print two plastic parts, put a JST-SH plug between them, and screw them together – if you want to modify these to your liking, .f3d sources are available. Now you no longer have to use fingernails or tin snips to take the JST-SH plug out of your modules!

[kmatch98] is no stranger to sharing his projects on Hackaday.io with us, and we’ve covered some of his larger projects before, like this CircuitPython-powered cyber-duck cyberdeck, or the 3D-printable Maypole braider machine!

Hackaday Prize 2022: Solar Harvesting Is Better With Big Capacitors

The sun is a great source of energy, delivering in the realm of 1000 watts per square meter on a nice clear day. [Jasper Sikken] has developed many projects that take advantage of this power over the years, and has just completed his latest solar harvesting module for powering microcontroller projects.

The concept is simple. A small solar panel is used to charge up a lithium ion capacitor (LIC), which can then be used to power other projects. We first saw this project last year, when it was one of the winners of Hackaday’s 2021 Earth Day contest. Back then, it was only capable of dishing out 80 mA at 2.2V.

However, the latest version ups the ante considerably, delivering up to 400 mA at 3.3V. This opens up new possibilities, allowing the module to power projects using technologies like Bluetooth, WiFi and LTE that require more current to operate. It relies on a giant 250 F capacitor to store energy, and a AEM10941 solar energy harvesting chip to get the most energy possible out of a panel using Maximum Power Point Tracking (MPPT).

It’s a useful thing to have for projects that you’d like to run off the sun, and you can score one off Tindie if you don’t want to build your own. We’ve seen [Jasper] pull off other neat solar-powered projects before, too. Video after the break.

Continue reading “Hackaday Prize 2022: Solar Harvesting Is Better With Big Capacitors”

Fancy Wire Loop Game Is A Beauty In Brass

The simple wire-loop game is often built as a fun project to teach students about electronics. [W&M Levsha] built their own version, showing off their fine crafting and machining skills and branding it as a sobriety test with the playful name “Breathalyzer.”

The mechanics of the game are quite simple. The player must guide a metal ring around the puzzle without touching it. A buzzer and light is used to indicate to the player when they’ve failed, with the project powered from a small lithium-polymer pouch cell charged via a USB port.

Where this build really shines is in the presentation, with [W&M Levsha] showing they really have what it takes to do great work in brass. Rather than a simple bent wire, we’re instead treated to a delicately-formed beam of rectangular cross-section hewn out of a single piece of metal. It’s paired with a nicely-crafted wand with a knurled handle.

We’ve seen similar displays of their exquisite craft before, too – such as with a bespoke toothbrush and a powder-powered lighter. Video after the break.

Continue reading “Fancy Wire Loop Game Is A Beauty In Brass”

Old Boat Becomes Toasty Floating Sauna

A sauna is a great place to feel warm and toasty and refreshed, but few of us have one at home. [Linus Strothmann] decided to build his own, using an old boat as the perfect base for his steamy build.

Finding the right boat was the first challenge; the vessel should be big enough to fully house the intended number of occupants, and be able to withstand sitting outside in the weather year-round. If it’s to be used in a place where it gets icy in winter, it’s best to go with a steel-hulled vessel.  [Linus] found a steel-hulled boat just under 8 m in length for less than 1000 Euros, and set to work on his project.

The boat was stripped out, and given high-quality glass windows capable of resisting the steam and high temperatures inside. A stove was installed for producing steam, and the boat-sauna was designed with multiple entries and exits for safety reasons. Insulation was also fitted to help keep heat in.

The result is a floating sauna that is an absolute pleasure to use in the winter months. Floating out on the lake, one can take in a steam, have a quick dip in the icy water, and then return to warm back up inside. [Linus] hopes to soon fit a small motor in order to allow the vessel to head out to the middle of the lake for an even better view during a steam session.

It’s not the first mobile sauna we’ve seen; a trailer-based design graced these pages last year. If you’re working on your own hot and steamy build, though, do share your work with us promptly!

Get GitHub Tickets IRL With A Raspberry Pi And A Receipt Printer

Thermal receipt printers are finding their way into all sorts of projects that are well beyond the point-of-sale environment that they normally inhabit. And while we applaud all the creative and artistic uses hackers have found for these little gems, this GitHub physical ticket printer has to be the best use for one yet.

According to [Andrew Schmelyun], seeing a fast-food order pop up on a thermal printer was the inspiration for this build. Maintaining over one hundred GitHub repos as he does, it’s easy for the details of any one bug report or feature request to get lost in the swarm of sticky notes that [Andrew] previously used to keep track of his work. To make it happen, he teamed an Epson thermal printer up to a Raspberry Pi Zero W and worked out the details of sending data to the printer using PHP. Luckily, there’s a library for that — the beauty of GitHub.

With the “Hello, World!” bit out of the way, [Andrew] turned his attention to connecting to GitHub. He set up some webhooks on the GitHub side to send a POST request every time an issue is reported on one of his repos. The POSTs are sent via ngrok to a PHP web server running on the Pi, which formats the data and sends the text to the printer. There’s a short video in the tweet below.

Between the sound of the printer working and the actual dead-tree ticket, it’ll be hard for [Andrew] to miss issues now. We’ve seen thermal printers stuffed into cameras, used to send pictures to Grannie, and even watched them commit suicide slowly, but we say hats off to [Andrew] for his solid work ethic and a fun new way to put a receipt printer to use.

Continue reading “Get GitHub Tickets IRL With A Raspberry Pi And A Receipt Printer”

LEGO-Sorting Vacuum Defeats The Problem

What’s the worst thing about LEGO? Most would agree that it’s the fact that those bright and colorful pieces of ABS are somehow the most evil thing that can come between your bare feet and solid ground. [Unnecessary Inventions] have done a one-eighty from their handle and made a quite useful invention — a LEGO-sorting vacuum cleaner called Suck It.

Well, technically, it’s a shop vac attachment, but it does the job beautifully. [Unnecessary Inventions] started with a never-used machine and a clear plastic cylinder cut into fourths. Then he designed some 3D printable brackets that have two jobs: they hold the cylinder together again, and they do so in stages that collect and sort LEGO by size.

The sorting brackets have no top and bottom layers to them — they are all sorting holes and infill to allow maximum suction. But wait, it gets even better, because the brackets click together satisfyingly with embedded magnets. The only thing that would make this build better is some kind of head attachment that could gather more than a narrow swath at a time. Be sure to check out the build and demo video after the break.

Of course, with this method, you still have to open up the sections and put your LEGO away. You could just vacuum them straight into the box.

Continue reading “LEGO-Sorting Vacuum Defeats The Problem”