Fairey Rotodyne in flight

Versatile, Yet Grounded: The Rotodyne Revisited

When it comes to aviation curiosities, few machines captivate the imagination like the Fairey Rotodyne. This British hybrid aircraft was a daring attempt to combine helicopter and fixed-wing efficiency into a single vehicle. A bold experiment in aeronautical design, the Rotodyne promised vertical takeoffs and landings in cramped urban spaces while offering the speed and range of a regional airliner. First flown in 1957, it captured the world’s attention but ultimately failed to realize its potential. Despite featured before, new footage keeps fascinating us. If you have never heard about this jet, keep reading.

The Rotodyne’s innovative design centered around a massive, powered rotor that utilized a unique tip-jet system. Compressed air, mixed with fuel and ignited at the rotor tips, created lift without the need for a tail rotor. The result: a smoother transition between vertical and forward flight modes. Inside, it offered spacious seating for 50 passengers and even had clamshell doors for cargo. Yet its futuristic approach wasn’t without drawbacks—most notably, the thunderous noise produced by its rotor jets, earning complaints from both city planners and residents.

Despite these hurdles, the helicopter-plane crossover demonstrated its versatility, setting a world speed record and performing groundbreaking intercity flights. Airlines and militaries expressed interest, but escalating development costs and noise concerns grounded this ambitious project.

To this day, the Rotodyne remains a symbol of what could have been—a marvel of engineering ahead of its time. Interested in more retro-futuristic aircraft tales? Read our previous story on it, or watch the original footage below and share your thoughts.

Continue reading “Versatile, Yet Grounded: The Rotodyne Revisited”

Single Crystal Electrode Lithium Ion Batteries Last A Long Time

Researchers have been testing a new type of lithium ion battery that uses single-crystal electrodes. Over several years, they’ve found that the technology could keep 80% of its capacity after 20,000 charge and discharge cycles. For reference, a conventional cell reaches 80% after about 2,400 cycles.

The researchers say that the number of cycles would be equivalent to driving about 8 million kilometers in an electric vehicle. This is within striking distance of having the battery last longer than the other parts of the vehicle. The researchers employed synchrotron x-ray diffraction to study the wear on the electrodes. One interesting result is that after use, the single-crystal electrode showed very little degradation. According to reports, the batteries are already in production and they expect to see them used more often in the near future.

The technology shows promise, too, for other demanding battery applications like grid storage. Of course, better batteries are always welcome, although it is hard to tell which new technologies will catch on and which will be forgotten.

There are many researchers working on making better batteries. Even AI is getting into the act.

This Week In Security: Recall, BadRAM, And OpenWRT

Microsoft’s Recall feature is back. You may remember our coverage of the new AI feature back in June, but for the uninitiated, it was a creepy security trainwreck. The idea is that Windows will take screenshots of whatever is on the screen every few seconds, and use AI to index the screenshots for easier searching. The only real security win at the time was that Microsoft managed to do all the processing on the local machine, instead of uploading them to the cloud. All the images and index data was available unencrypted on the hard drive, and there weren’t any protections for sensitive data.

Things are admittedly better now, but not perfect. The recall screenshots and database is no longer trivially opened by any user on the machine, and Windows prompts the user to set up and authenticate with Windows Hello before using Recall. [Avram] from Tom’s Hardware did some interesting testing on the sensitive information filter, and found that it worked… sometimes.

So, with the public preview of Recall, is it still creepy? Yes. Is it still a security trainwreck? It appears that the security issues are much improved. Time will tell if a researcher discovers a way to decrypt the Recall data outside of the Recall app.

Patch Tuesday

Since we’re talking about Microsoft, this week was Patch Tuesday, and we had seventy-one separate vulnerabilities fixed, with one of those being a zero-day that was used in real-world attacks. CVE-2024-49138 doesn’t seem to have a lot of information published yet. We know it’s a Heap-based Buffer Overflow in the Common Log File driver, and allows an escalation of privilege to SYSTEM on Windows machines. Continue reading “This Week In Security: Recall, BadRAM, And OpenWRT”

The 6GHz Band Opens In The US

On December 11th, the FCC announced that the band around 6GHz would be open to “very low-power devices.” The new allocation shares space with other devices already using these frequencies. The release mentions a few limitations over the 350 MHz band (broken into two segments). First, the devices must use a contention-based protocol and implement transmit power control. The low-power devices may not be part of a fixed outdoor infrastructure.

The frequencies are 6.425-6.525 GHz, 6.875-7.125 GHz and the requirements are similar to those imposed on 802.11ax in the nearby U-NII-5 and U-NII-7 bands.

Continue reading “The 6GHz Band Opens In The US”

2025 Hackaday Europe CFP: We Want You!

Hackaday’s Supercon is still warm in our hearts, and the snow is just now starting to fall, but we’re already looking forward to Spring. Or at least to Hackaday Europe, which will be taking place March 15th and 16th in Berlin, Germany.

Tickets aren’t on sale yet, but we know a way that you can get in for free.

Call for Participation

What makes Hackaday Europe special? Well, it’s you! We’re excited to announce that we’re opening up our call for talks right now, and we can’t wait to hear what you have to say. Speakers of course get in free, but the real reason that you want to present is whom you’re presenting to.

The Hackaday audience is interested, inquisitive, and friendly. If you have a tale of hardware, firmware, or software derring-do that would only really go over with a Hackaday crowd, this is your chance. We have slots open for shorter 20-minute talks as well as longer 40-minute ones, so whether you’ve got a quick hack or you want to take a deep dive, we’ve got you covered. We especially love to hear from new voices, so if you’ve never given a talk about your projects before, we’d really encourage you to apply!

Here is last year’s lineup, if you’re wondering what goes on, and if your talk would fit in.

Continue reading “2025 Hackaday Europe CFP: We Want You!”

Finally Putting The RK1 Through Its Paces

The good folks at Turing Pi sent me a trio of RK1 modules to put through their paces, to go along with the single unit I bought myself. And the TLDR, if you need some real ARM processing power, and don’t want to spend an enterprise budget, a Turing Pi 2 filled with RK1s is a pretty compelling solution. And the catch? It’s sporting the Rockchip RK3588 processor, which means there are challenges with kernel support.

For those in the audience that haven’t been following the Turing Pi project, let’s recap. The Turing Pi 1 was a mini ITX carrier board for the original Raspberry Pi compute module, boasting 7 nodes connected with onboard Gigabit.

That obviously wasn’t enough power, and once Raspberry Pi released the CM4, the Turing Pi 2 was conceived, boasting 4 slots compatible with the Nvidia Jetson compute units, as well as the Raspberry Pi CM4 with a minimal adapter. We even covered it shortly after the Kickstarter. And now we have the RK1, which is an 8-core RK3588 slapped on a minimal board, pin compatible with the Nvidia Jetson boards. Continue reading “Finally Putting The RK1 Through Its Paces”

This Week In Security: National Backdoors, Web3 Backdoors, And Nearest Neighbor WiFi

Maybe those backdoors weren’t such a great idea. Several US Telecom networks have been compromised by a foreign actor, likely China’s Salt Typhoon, and it looks like one of the vectors of compromise is the Communications Assistance for Law Enforcement Act (CALEA) systems that allow for automatic wiretapping at government request.

[Jeff Greene], a government official with the Cybersecurity and Infrastructure Security Agency (CISA), has advised that end-user encryption is the way to maintain safe communications. This moment should forever be the touchstone we call upon when discussing ideas like mandated encryption backdoors and even the entire idea of automated wiretapping systems like CALEA. He went on to make a rather startling statement:

I think it would be impossible for us to predict a time frame on when we’ll have full eviction

There are obviously lots of unanswered questions, but with statements like this from CISA, this seems to be an extremely serious compromise. CALEA has been extended to Internet data, and earlier reports suggest that attackers have access to Internet traffic as a result. This leaves the US telecom infrastructure in a precarious position where any given telephone call, text message, or data packet may be intercepted by an overseas attacker. And the FCC isn’t exactly inspiring us with confidence as to its “decisive steps” to fix things. Continue reading “This Week In Security: National Backdoors, Web3 Backdoors, And Nearest Neighbor WiFi”