Raspberry Pi Compute Module 5 Seen In The Wild

Last Thursday we were at Electronica, which is billed as the world’s largest electronics trade show, and it probably is! It fills up twenty airplane-hangar-sized halls in Munich, and only takes place every two years.

And what did we see on the wall in the Raspberry Pi department? One of the relatively new AI-enabled cameras running a real-time pose estimation demo, powered by nothing less than a brand-new Raspberry Pi Compute Module 5. And it seemed happy to be running without a heatsink, but we don’t know how much load it was put under – most of the AI processing is done in the camera module.

We haven’t heard anything about the CM5 yet from the Raspberry folks, but we can’t imagine there’s all that much to say except that they’re getting ready to start production soon. If you look really carefully, this CM5 seems to have mouse bites on it that haven’t been ground off, so we’re speculating that this is still a pre-production unit, but feel free to generate wild rumors in the comment section.

The test board looks very similar to the RP4 CM demo board, so we imagine that the footprint hasn’t changed. (Edit: Oh wait, check out the M2 slot on the right-hand side!)

The CM4 was a real change for the compute module series, coming with a brand-new pinout that enabled them to break out more PCIe lanes. Despite the special connectors, it wasn’t all that hard to work with if you’re dedicated. So if you need more computing power in that smaller form factor, we’re guessing that you won’t have to wait all that much longer!

Thanks [kuro] for the tip, and for walking around Electronica with me.

The Great Redbox Cleanup: One Company Is Hauling Away America’s Last DVD Kiosks

Remember Redbox? Those bright red DVD vending machines that dotted every strip mall and supermarket in America, offering cheap rentals when Netflix was still stuffing discs into paper envelopes? After streaming finally delivered the killing blow to physical rentals, Redbox threw in the towel in June 2024, leaving around 34,000 kiosks standing as silent monuments to yet another dead media format.

Last month, we reported that these machines were still out there, barely functional and clinging to life. Now, a company called The Junkluggers has been tasked with the massive undertaking of clearing these mechanical movie dispensers from the American retail landscape, and they’re doing it in a surprisingly thoughtful way. I chatted to them to find out how it’s going.

Continue reading “The Great Redbox Cleanup: One Company Is Hauling Away America’s Last DVD Kiosks”

Close-up of a woman's neck with a haptic patch

Hacking Haptics: The 19-Sensor Patch Bringing Touch To Life

On November 6th, Northwestern University introduced a groundbreaking leap in haptic technology, and it’s worth every bit of attention now, even two weeks later. Full details are in their original article. This innovation brings tactile feedback into the future with a hexagonal matrix of 19 mini actuators embedded in a flexible silicone mesh. It’s the stuff of dreams for hackers and tinkerers looking for the next big thing in wearables.

What makes this patch truly cutting-edge? First, it offers multi-dimensional feedback: pressure, vibration, and twisting sensations—imagine a wearable that can nudge or twist your skin instead of just buzzing. Unlike the simple, one-note “buzzers” of old devices, this setup adds depth and realism to interactions. For those in the VR community or anyone keen on building sensory experiences, this is a game changer.

But the real kicker is its energy management. The patch incorporates a ‘bistable’ mechanism, meaning it stays in two stable positions without continuous power, saving energy by recycling elastic energy stored in the skin. Think of it like a rubber band that snaps back and releases stored energy during operation. The result? Longer battery life and efficient power usage—perfect for tinkering with extended use cases.

And it’s not all fun and games (though VR fans should rejoice). This patch turns sensory substitution into practical tech for the visually impaired, using LiDAR data and Bluetooth to transmit surroundings into tactile feedback. It’s like a white cane but integrated with data-rich, spatial awareness feedback—a boost for accessibility.

Fancy more stories like this? Earlier this year, we wrote about these lightweight haptic gloves—for those who notice, featuring a similar hexagonal array of 19 sensors—a pattern for success? You can read the original article on TechXplore here.

The GREMLIN sensor suite contains several sensing modalities to detect, track, characterize and identify UAP in areas of interest. (Credit: US AARO)

US’s UFO-Hunting Aerial Surveillance System Detailed In Report

Formerly known as Unidentified Flying Objects, Unidentified Anomalous Phenomena (UAP) is a category of observations that are exactly what the UAP label suggests. This topic concerns the US military very much, as a big part of national security involves knowing everything that appears in the skies. This is the reason for the development of a new sensor suite by the Pentagon called GREMLIN. Recently, a new report has provided more details about what this system actually does.

Managed by the All-domain Anomaly Resolution Office (AARO) within the DoD, GREMLIN blends many different sensors, ranging from radar to ADS-B and RF monitors, together to establish a baseline and capture any anomalies within the 90-day monitoring period to characterize them.

UAPs were a popular topic even before the 1950s when people began to see them everywhere. Usually taking the form of lights or fast-moving objects in the sky, most UAP reports can be readily classified as weather balloons, satellites like Starlink, airplanes, the Northern Lights, the ISS, or planets like Mars and Venus. There are also curious phenomena such as the Hessdalen lights, which appear to be a geological, piezoelectric phenomenon, though our understanding of such natural lighting phenomena remains limited.

But it is never aliens, that’s one thing we know for sure. Not that UFO’s don’t exist. Really.

Vintage telephone

World’s First Virtual Meeting: 5,100 Engineers Phoned In

Would you believe that the first large-scale virtual meeting happened as early as 1916? More than a century before Zoom meetings became just another weekday burden, the American Institute of Electrical Engineers (AIEE) pulled off an unprecedented feat: connecting 5,100 engineers across eight cities through an elaborate telephone network. Intrigued? The IEEE, the successor of the AIEE, just published an article about it.

This epic event stretched telephone lines over 6,500 km, using 150,000 poles and 5,000 switches, linking major hubs like Atlanta, Boston, Chicago, and San Francisco. John J. Carty banged the gavel at 8:30 p.m., kicking off a meeting in which engineers listened in through seat-mounted receivers—no buffering or “Can you hear me?” moments. Even President Woodrow Wilson joined, sending a congratulatory telegram. The meeting featured “breakout sessions” with local guest speakers, and attendees in muted cities like Denver sent telegrams, old-school Zoom chat style.

The event included musical interludes with phonograph recordings of patriotic tunes—imagine today’s hold music, but gloriously vintage. Despite its success, this wonder of early engineering vanished from regular practice until our modern virtual meetings.

We wonder if Isaac Asimov knew about this when he wrote about 3D teleconferencing in 1953. If you find yourself in many virtual meetings, consider a one-way mirror.

This Week In Security: Hardware Attacks, IoT Security, And More

This week starts off with examinations of a couple hardware attacks that you might have considered impractical. Take a Ball Grid Array (BGA) NAND removal attack, for instance. The idea is that a NAND chip might contain useful information in the form of firmware or hard-coded secrets.

The question is whether a BGA desolder job puts this sort of approach out of the reach of most attackers. Now, this is Hackaday. We regularly cover how our readers do BGA solder jobs, so it should come as no surprise to us that less than two-hundred Euro worth of tools, and a little know-how and bravery, was all it took to extract this chip. Plop it onto a pogo-pin equipped reader, use some sketchy Windows software, and boom you’ve got firmware.

What exactly to do with that firmware access is a little less straightforward. If the firmware is unencrypted and there’s not a cryptographic signature, then you can just modify the firmware. Many devices include signature checking at boot, so that limits the attack to finding vulnerabilities and searching for embedded secrets. And then worst case, some platforms use entirely encrypted firmware. That means there’s another challenge, of either recovering the key, or finding a weakness in the encryption scheme. Continue reading “This Week In Security: Hardware Attacks, IoT Security, And More”

The Diablo Canyon NPP in California. This thermal plant uses once-through cooling. (Credit: Doc Searls)

US DOE Sets New Nuclear Energy Targets

To tackle the growing electrification of devices, we’ll need to deploy more generation to the grid. The US Department of Energy (DOE) has unveiled a new target to triple nuclear generating capacity by 2050.

Using a combination of existing Generation III+ reactor designs, upcoming small modular and micro reactors, and “legislation like the ADVANCE Act that streamlines regulatory processes,” DOE plans to add 35 gigawatt (GW) of generating capacity by 2035 and an additional 15 GW installed per year by 2040 to hit a total capacity of 200 GW of clean, green atom power by 2050.

According to the DOE, 100 GW of nuclear power was deployed in the 1970s and 1980s, so this isn’t an entirely unprecedented scale up of nuclear, although it won’t happen overnight. One of the advantages of renewables over nuclear is the lower cost and better public perception — but a combination of technologies will create a more robust grid than an “all of your eggs in one basket” approach. Vehicle to grid storage, geothermal, solar, wind, and yes, nuclear will all have their place at the clean energy table.

If you want to know more about siting nuclear on old coal plants, we covered DOE’s report on the matter as well as some efforts to build a fusion reactor on a decommissioned coal site as well.