PCB Design Review: M.2 SSD Splitter

Today’s PCB design review is a board is from [Wificable]. iI’s a novel dual-SSD laptop adapter board! See, CPUs and chipsets often let you split wide PCIe links into multiple smaller width links. This board relies on a specific laptop with a specific CPU series, and a BIOS mod, to put two M.2 NVMe SSDs into a single SSD slot of a specific series’ laptop.

This board has two crucial factors – mechanical compatibility, and electrical function. Looking into mechanics, it’s a 0.8 mm thick PCB that plugs into a M.2 socket, and it has sockets for two SSDs on it – plenty of bending going on. For electronics, it has a PCIe REFCLK clock buffer, that [Wificable] found on Mouser – a must have for PCIe bifurcation, and a must-work for this board’s core! Apart from that, this is a 4-layer board, it basically has to be for diffpairs to work first-try.

Of course, the clock buffer chip is the main active component and the focus of the board, most likely mistakes will happen there – let’s look at the chip first.

Continue reading “PCB Design Review: M.2 SSD Splitter”

This Thermometer Rules!

A PCB ruler is a common promotional item, or design exercise. Usually they have some sample outlines and holes as an aid to PCB design, but sometimes they also incorporate some circuitry. [Clovis Fritzen] has given us an ingenious example, in the form of a PCB ruler with a built-in thermometer.

This maybe doesn’t have the fancy seven segment or OLED display you were expecting though, instead it’s an ATtiny85 with a lithium cell, the minimum of components, a thermistor for measurement, and a couple of LEDs that serve as the display. These parts are interesting, because they convey the numbers by flashing. One LED is for the tens and the other the units, so count the flashes and you have it.

We like this display for its simplicity, we can see the same idea could be used in many other places.On a PCB ruler, it certainly stands apart from the usual. It has got plenty of competition though.

Custom PCB Is A Poor Man’s Pick And Place

Surface mount devices have gotten really small, so small that a poorly timed sneeze can send your 0603 and 0402 parts off to live with the dust motes lurking at the edge of your bench. While soldering such parts is a challenge, it’s not always size that matters. Some parts with larger footprints can be a challenge because of the pin pitch, and getting them to land just right on the PCB pads can be a real pain.

To fight this problem, [rahmanshaber] came up with this clever custom PCB fixture. The trick is to create a jig to hold the fine-pitch parts securely while still leaving room to work. In his case, the parts are a couple of SMD ribbon cable connectors and some chips in what appear to be TQFP packages. [rahmanshaber] used FreeCAD to get the outline of each part from the 3D model of his PCB, and KiCad to design the cutouts; skip to 7:30 or so in the video below if you don’t need the design lesson. The important bit is to leave enough room around the traces so that the part’s leads can rest of the PCB while still having room to access them.

Using the fixture is pretty intuitive. The fixture is aligned over the footprint of the part and fixed in place with some tape. Solder paste is applied to the pads, the part is registered into the hole, and you’re ready for soldering. [rahmanshaber] chose to use a hot plate to do the soldering, but it looks like there’s enough room for a soldering iron, if that’s your thing.

It’s a simple idea, but sometimes the simplest tools are the best. We’ve seen lots of other simple SMD tools, from assembly jigs to solder paste stencil fixtures. Continue reading “Custom PCB Is A Poor Man’s Pick And Place”

Electroplating DIY PCB Vias At Home Without Chemical Baths

Although DIY PCB making has made great strides since the early days of chemical etching, there’s one fly in the ointment: vias. These connect individual layers of the board with a conductive tube, and are essential for dual-layer PCBs, never mind boards with a larger layer stack. The industry standard way of producing them is rather cumbersome and doesn’t scale well to a hobby or prototyping context. Might there be a better way? This is the question that [Levi Janssen] set out to answer with a new home PCB manufacturing project.

The goal here is to still electroplate the vias as with the commercial solution, just without having to use chemical baths. This way it should be suitable for an automated setup, with a tool head that performs the coating of the via with a high-resistance conductive ink before the electroplating step, all without submerging the entire PCB. After an initial experiment showed promising results, [Levi] committed to a full prototype.

This turned out to be a bridge too far, so the prototype was scaled down to a simpler machine. This is where the main issue with electroplating one via at a time became clear, as a standard 0.3 mm via takes easily 10 minutes to electroplate, even with an increase in voltage. At that point ordering a PCB from China becomes the faster option if you have enough vias in the design. Fortunately [Levi] figures he may have some solutions there, so we’ll have to wait and see what those are in the next installment. The video is below the break.

Continue reading “Electroplating DIY PCB Vias At Home Without Chemical Baths”

A History Of Copper Pours

If you compare a modern PCB with a typical 1980s PCB, you might notice — like [lcamtuf] did — that newer boards tend to have large areas of copper known as pours instead of empty space between traces. If you’ve ever wondered why this is, [lcamtuf] explains.

The answer isn’t as simple as you might think. In some cases, it is just because the designer is either copying the style of a different board or the design software makes it easy to do. However, the reason it caught on in the first place is a combination of high-speed circuitry and FCC RF emissions standards. But why do pours help with unintentional emissions and high-speed signals?

Continue reading “A History Of Copper Pours”

Audio On A Shoestring: DIY Your Own Studio-Grade Mic

When it comes to DIY projects, nothing beats the thrill of crafting something that rivals expensive commercial products. In the microphone build video below, [Electronoobs] found himself inspired by DIY Perks earlier efforts. He took on the challenge of building a $20 high-quality microphone—a budget-friendly alternative to models priced at $500. The result: an engaging and educational journey that has it’s moments of triumph, it’s challenges, and of course, opportunities for improvement.

The core of the build lies in the JLI-2555 capsule, identical to those found in premium microphones. The process involves assembling a custom PCB for the amplifier, a selection of high-quality capacitors, and designing lightweight yet shielded wiring to minimize noise. [Electronoobs] also demonstrates the importance of a well-constructed metal mesh enclosure to eliminate interference, borrowing techniques like shaping mesh over a wooden template and insulating wires with ultra-thin enamel copper. While the final build does not quite reach the studio-quality level and looks of the referenced DIY Perks’ build, it is an impressive attempt to watch and learn from.

The project’s key challenge here would be achieving consistent audio quality. The microphone struggled with noise, low volume, and single-channel audio, until [Electronoobs] made smart modifications to the shielded wiring and amplification stages. Despite the hurdles, the build stands as an affordable alternative with significant potential for refinement in future iterations.

Continue reading “Audio On A Shoestring: DIY Your Own Studio-Grade Mic”

Perfecting 20 Minute PCBs With Laser

Normally, you have a choice with PCB prototypes: fast or cheap. [Stephen Hawes] has been trying fiber lasers to create PCBs. He’s learned a lot which he shares in the video below. Very good-looking singled-sided boards take just a few minutes. Fiber lasers are not cheap but they are within range for well-off hackers and certainly possible for a well-funded hackerspace.

One thing that’s important is to use FR1 phenolic substrate instead of the more common FR4. FR4 uses epoxy which will probably produce some toxic fumes under the laser.

Continue reading “Perfecting 20 Minute PCBs With Laser”