Image by [heinn_dev] via redditApparently [heinn_dev] wasn’t completely satisfied with his Chocofi case, and instead of requesting a full refund, just went ahead and made a prettier one. It took a lot of printing and even more sanding, but here we are. And it looks fantastic.
The only downside, if you can call it one, is that adjusting the tenting is a slow operatiJKon. But then again that’s one of those things that you usually set and forget.
Oh, and those keycaps are printed, too. As one commenter said, those homing nipples look painful, but I think it’s part of the charm. I just hope that hand grime doesn’t end up clogging the holes under the palm area. Clean your keyboards, people. Continue reading “Keebin’ With Kristina: The One With The H.R. Giger Keyboard”→
Motorized faders are very cool, and you can find them in everything from expensive mixing desks to high-end video editing decks. If you want to build your own wireless motorized fader controls for your own projects, you might like this project from [Ian Peterson].
Faders are useful controls, but they’re usually very one-way devices—you set them to what you want, and that’s it. However, motorized faders are a little fancier. You can move them yourself, or they can be moved under the command of other hardware or software—making a control change automatically that is still visible to the human in front of the control panel.
[Ian Peterson] built his OSCillator motorized fader for his work with lighting consoles in theater contexts. Its name references the Open Sound Control (OSC) platform which is commonly used across various lighting consoles. His build relies on an ESP32 to run the show, which communicates with other lighting hardware via WiFi. The microcontroller is responsible for reading the position of the fader and built-in button, and sending the relevant commands to other lighting devices on the network. At the same time, it must also listen to commands from lighting consoles on the network and update the motorized fader’s position in turn if the relevant control it’s mapped to has been changed elsewhere.
If you’re working in theater or film and you’re wanting to control lighting cues wirelessly, a tool like this can really come in handy. We don’t see a lot of motorized faders in DIY projects, but they pop up now and then.
It’s fair to say that there can’t be many developers who have found the need for a rotary telephone dial as a peripheral for their Linux computer, but in case you are among them you might find [Stefan Wiehler]’s kernel driver for rotary dials to be of use.
It’s aimed at platforms such as systems-on-chip that have ready access to extra GPIOs, of which it will need a couple to service the BUSY and PULSE lines. There are full set-up instructions, and once it’s in place and configured it presents the dial as though it were a number pad.
We like this project, in fact we like it a lot. Interfacing with a dial is always something we’ve done with a microcontroller though, so it will be interesting to see whether it finds a use beyond merely curiosity. We can already see a generation of old-school dial IP phones using Linux-capable dev boards. He leaves us with a brief not as to whether Linus Torvalds would see it as worthy of mainline inclusion, and sadly however much we want things to be different, we agree that it might be wishful thinking.
Although there was a time in the 80s (and early 90s for fans of the SuperScope) where light guns were immensely popular, with games like DuckHunt cultural touchstones, their time in the video game world has largely come to an end. We might occasionally pick up a Zapper for the NES and play this classic out of nostalgia, but plenty of people are looking for other things that these unique video game controllers can do instead. [Nick] has turned one of his old NES peripherals into a wireless phone.
The way the original Zapper worked was by looking for a certain pattern of pixels that displayed for a fraction of a second whenever the trigger was pulled. Bypassing the anti-cheat mechanism that looks only for qualities of light coming from CRT screens of the day effectively turns the light gun into an analog light sensor which is used for receiving the audio from the phone’s base station via a laser. Of course there were no microphones present within the original hardware so one is added, wiring its output to another laser that communicates to the base station. With the light gun pointed directly at this base station, audio is communicated back and forth by varying the strengths of these small lasers and listening to them on the other end with photodiodes.
[Nick] does point out that this isn’t a great phone, largely because it needs to be pointed exactly at the right spot to work at all, although we do agree that it’s an interesting project that demonstrates what the original hardware could do with a few of its limitations removed. There are a few other ways of bringing these devices into the modern world, with one of our favorites being this laser pointer with additional hardware from a Wiimote that could also function as a mouse.
Image by [dynam1keNL] via redditBut sir! I can’t believe I missed [dynam1keNL]’s initial flat offering from about a year ago, the mikefive, which came about when he and some friends ordered switches directly from Kailh and Kailh were like, do you want to try these even lower-profile PG1316 laptop switches? It’s called the mikefive because it’s 5 mm thick.
That’s okay, though, because now you’re caught up and I can talk about his latest keyboard, the mikecinq. The inspiration for this one includes the aesthetics of Le Chiffre and the slimness of Le Oeuf. As you’ll see in the gallery, the top is ever-so-slightly slanted downward from the top.
You can see it really well in the second picture — the top row is flush with the case, and the keys gradually get taller toward the thumb clusters. All [dynam1keNL] really had to do was 3D model the new case and screw in the PCB from his daily driver mikefive.
Image by [dynam1keNL] via reddit[dynam1keNL] ultimately found it nice and comfy, especially for the thumbs, but decided to take it one step further and designed a new switch footprint. Why? The PG1316s are surface-mount with contacts below the switch, so you really need a hotplate or oven to mount them.
So in order to deal with this, he made a dedicated mikecinq PCB with big cutouts with castellated holes beneath each switch. Now, the switch contacts are accessible from underneath and can be soldered with an iron.
You may have noticed that the mikefive production files are not available on GitHub — that’s because it was recently licensed and will be available soon. But if you want production files for the mikecinq, let him know in the comments.
Sometimes, a little goes a long way. I believe that’s the case with this tiny media control bar from [likeablob] that uses an ESP32-C3 Super Mini.
Image by [likeablob] via Hackaday.IOFrom left to right you’ve got a meta key that allows double functions for all the other keys. The base functions are play/pause, previous track, and next track while the knob handles volume.
And because it uses this Wi-Fi-enabled microcontroller, it can seamlessly integrate with Home Assistant via ESPHome.
What else is under the hood? Four low-profile Cherry MX Browns and a rotary encoder underneath that nicely-printed knob.
In the world of (expensive) lab test equipment the GPIB (general purpose interface bus) connection is hard to avoid if you want any kind of automation, but nobody likes wrangling with the bulky cables and compatibility issues when they can just use Ethernet instead. Here [Chris]’s Ethernet-GPIB adapter provides an easy solution, with both Power over Ethernet (PoE) and USB-C power options. Although commercial adapters already exist, these are rather pricey at ~$500.
Features of this adapter include a BOM total of <$50, with power provided either via PoE (802.3af) or USB-C (5V-only). The MCU is an ATmega4809 with the Ethernet side using a Wiznet W5500 SPI Ethernet controller. There is also a serial interface (provided by a CH340X USB-UART adapter), with the firmware based on the AR488 project.
The adapter supports both the VXI-11.2 and Prologix protocols, though not at the same time (due to ROM size limitations). All design documents are available via the GitHub repository, with the author also selling assembled adapters and providing support primarily via the EEVBlog forums.