Radio Caroline At 60

In the 1960s, if you were a teenager in the United States, a big part of your life was probably music. There was a seemingly endless supply of both radio stations and 45s to keep you entertained. In the UK and other countries, though, the government held a monopoly on broadcasting, and they were not always enthralled with the music kids liked. Where there is demand, there is an opportunity, and several enterprising broadcasters set up radio stations at sea, the so-called pirate radio stations. In 1964, Irish businessman [Ronan O’Rahilly] did just this and founded Radio Caroline. Can you imagine that 60 years later, Radio Caroline is still around?

Not that it has been in operation for 60 years in a row. There were a few years the station’s ship had been impounded by creditors. Then, the ship ran aground on the Goodwin Sands and was damaged. You can see a news short from 1965 in the video below (Radio Caroline shows up at about the 1:50 mark).

Continue reading “Radio Caroline At 60”

A Tiny Tuner For The Low Power Ham

Something that all radio amateurs encounter sooner or later is the subject of impedance matching. If you’d like to make sure all that power is transferred from your transmitter into the antenna and not reflected back into your power amplifier, there’s a need for the impedance of the one to match that of the other. Most antennas aren’t quite the desired 50 ohms impedance, so part of the standard equipment becomes an antenna tuner — an impedance matching network. For high-power hams these are big boxes full of chunky variable capacitors and big air cored inductors, but that doesn’t exclude the low-power ham from the impedance matching party. [Barbaros Aşuroğlu WB2CBA] has designed the perfect device for them: the credit card ATU.

The circuit of an antenna tuner is simple enough, two capacitors and an inductor in a so-called Pi-network because of its superficial resemblance to the Greek letter Pi. The idea is to vary the capacitances and inductance to find the best match, and on this tiny model it’s done through a set of miniature rotary switches. There are a set of slide switches to vary the configuration or switch in a load, and there’s even a simple matching indicator circuit.

We like this project, in that it elegantly provides an extremely useful piece of equipment, all integrated into a tiny footprint. It’s certainly not the first ATU we’ve brought you.

Thanks [ftg] for the tip!

GitHub Hosts Ham Radio

[Alex R2AUK] has been busy creating version two of a homebrew all-band ham radio transceiver. The unit has a number of features you don’t always see in homebrew radios. It covers the 80, 40, 30, 20, 17, 15, 12, and 10 meter bands. The receiver is a single-IF design with AGC. The transmitter provides up to 10W for CW and 5W for single sideband operations. There’s a built-in keyer, too. A lot of the documentation is in Russian (including the video below, which is part of a playlist). But translation tools are everywhere, so if you don’t speak Russian, you can still probably figure it out.

The VFO for both transmit and receive is an Si5351. The transmit chain is straightforward. The receiver reuses many of the same filters.

Continue reading “GitHub Hosts Ham Radio”

Matchbox Transceiver Pushes The Spy Radio Concept To Its Limits

The Altoids tin has long been the enclosure of choice for those seeking to show off their miniaturization chops. This is especially true for amateur radio homebrewers — you really have to know what you’re doing to stuff a complete radio in a tiny tin. But when you can build an entire 80-meter transceiver in a matchbox, that’s a whole other level of DIY prowess.

It’s no surprise that this one comes to us from [Helge Fykse (LA6NCA)], who has used the aforementioned Altoids tin to build an impressive range of “spy radios” in both vacuum tube and solid-state versions. He wisely chose solid-state for the matchbox version of the transceiver, using just three transistors and a dual op-amp in a DIP-8 package. There’s also an RF mixer in an SMD package; [Helge] doesn’t specify the parts, but it looks like it might be from Mini-Circuits. Everything is mounted dead bug style on tiny pieces of copper-clad board that get soldered to a board just the right size to fit in a matchbox.

A 9 volt battery, riding in a separate matchbox, powers the rig. As do the earbud and tiny Morse key. That doesn’t detract from the build at all, and neither does the fact that the half-wave dipole antenna is disguised as a roll of fishing line. [Helge]’s demo of the radio is impressive too. The antenna is set up very low to the ground to take advantage of near vertical incidence skywave (NVIS) propagation, which tends to direct signals straight up into the ionosphere and scatter them almost directly back down. This allows for medium-range contacts like [Helge]’s 239 km contact in the video below.

Banging out Morse with no sidetone was a challenge, but it’s a small price to pay for such a cool build. We’re not sure how much smaller [Helge] can go, but we’re eager to see him try.

Continue reading “Matchbox Transceiver Pushes The Spy Radio Concept To Its Limits”

Spend An Hour In The Virtual Radio Museum

You have an hour to kill, and you like old communication technology. If you happen to be in Windsor, Connecticut, you could nip over to the Vintage Radio and Communication Museum. If you aren’t in Windsor, you could watch [WG7D’s] video tour, which you can see below.

The museum is a volunteer organization and is mostly about radio, although we did spy some old cameras if you like that sort of thing. There was also a beautiful player piano that — no kidding — now runs from a vacuum cleaner.

Continue reading “Spend An Hour In The Virtual Radio Museum”

Ham Radio Paddles Cost Virtually Nothing

If you don’t know Morse code, you probably think of a radio operator using a “key” to send Morse code. These were — and still are — used. They are little more than a switch built to be comfortable in your hand and spring loaded so the switch makes when you push down and breaks when you let up. Many modern operators prefer using paddles along with an electronic keyer, but paddles can be expensive. [N1JI] didn’t pay much for his, though. He took paperclips, a block of wood, and some other scrap bits and made his own paddles. You can see the results in the video below.

When you use a key, you are responsible for making the correct length of dits and dahs. Fast operators eventually moved to a “bug,” which is a type of paddle that lets you push one way or another to make a dash (still with your own sense of timing). However, if you push the other way, a mechanical oscillator sends a series of uniform dots for as long as you hold the paddle down.

Modern paddles tend to work with electronic “iambic” keyers. Like a bug, you push one way to make dots and the other way to make dashes. However, the dashes are also perfectly timed, and you can squeeze the paddle to make alternating dots and dashes. It takes a little practice, but it results in a more uniform code, and most people can send it faster with a “sideswiper” than with a straight key.

Continue reading “Ham Radio Paddles Cost Virtually Nothing”

DIY Passive Radar System Verifies ADS-B Transmissions

Like most waves in the electromagnetic spectrum, radio waves tend to bounce off of various objects. This can be frustrating to anyone trying to use something like a GMRS or LoRa radio in a dense city, for example, but these reflections can also be exploited for productive use as well, most famously by radar. Radar has plenty of applications such as weather forecasting and various military uses. With some software-defined radio tools, it’s also possible to use radar for tracking aircraft in real-time at home like this DIY radar system.

Unlike active radar systems which use a specific radio source to look for reflections, this system is a passive radar system that uses radio waves already present in the environment to track objects. A reference antenna is used to listen to the target frequency, and in this installation, a nine-element Yagi antenna is configured to listen for reflections. The radio waves that each antenna hears are sent through a computer program that compares the two to identify the reflections of the reference radio signal heard by the Yagi.

Even though a system like this doesn’t include any high-powered active elements, it still takes a considerable chunk of computing resources and some skill to identify the data presented by the software. [Nathan] aka [30hours] gives a fairly thorough overview of the system which can even recognize helicopters from other types of aircraft, and also uses the ADS-B monitoring system as a sanity check. Radar can be used to monitor other vehicles as well, like this 24 GHz radar module found in some modern passenger vehicles.

Continue reading “DIY Passive Radar System Verifies ADS-B Transmissions”