Uplink System For High-Altitude Balloons

Most uses of high-altitude balloons are fairly simple: send balloon up, have it beam down measurements and images. While this is indeed straightforward, it is also very limiting. This is why [Dave Akerman] has been working on adding to the HAB balloons he regularly flies. This builds on the work [Dave] did back in 2015 with adding LoRa transceiver RF communication.

Since LoRa transceivers are by definition capable of bidirectional communication, this was very useful for adding simple but essential features such as retransmission of data in case e.g. part of some image or telemetry data is missing. Other interesting things one can do with bidirectional transmission include controlling individual balloons, and having them transmit or relay information between balloons.

A tricky thing which [Dave] describes in the blog post is making sure that both ends of the connection are actually listening using timing settings. The use of encryption is also strongly recommended, unless you want to risk someone hijacking your balloons. This has now all been implemented in the HAB Explora app for Android, as well as the application for Windows.

Header image: Antonino Vara, CC BY 4.0.

Fun While It Lasted, Falcon 9 Telemetry Now Encrypted

A few weeks back we brought word that Reddit users [derekcz] and [Xerbot] had managed to receive the 2232.5 MHz telemetry downlink from a Falcon 9 upper stage and pull out some interesting plain-text strings. With further software fiddling, the vehicle’s video streams were decoded, resulting in some absolutely breathtaking shots of the rocket and its payload from low Earth orbit.

Unfortunately, it looks like those heady days are now over, as [derekcz] reports the downlink from the latest Falcon 9 mission was nothing but intelligible noise. Since the hardware and software haven’t changed on his side, the only logical conclusion is that SpaceX wasn’t too happy about radio amateurs listening in on their rocket and decided to employ some form of encryption.

Since this data has apparently been broadcast out in the clear for nearly a decade before anyone on the ground noticed, it’s easy to see this as an overreaction. After all, what’s the harm in a few geeks with hacked together antennas getting a peek at a stack of Starlink satellites? [derekcz] even mused that allowing hobbyists to capture these space views might earn the company some positive buzz, something Elon Musk never seems to get enough of.

Some of the images [derekcz] was able to capture from the Falcon 9

On the other hand, we know that SpaceX is actively pursuing more lucrative national security launch contracts for both the Falcon 9 and Falcon Heavy. For these sensitive government payloads, the normal on-screen telemetry data and space views are omitted from the company’s official live streams. It seems likely the Pentagon would be very interested in finding out how civilians were able to obtain this information, and a guarantee from SpaceX that the link would be encrypted for all future flights could have helped smooth things over.

At the end of the post [derekcz] echos a sentiment we’ve been hearing from other amateur radio operators  recently, which is that pretty soon space may be off-limits for us civilians. As older weather satellites begin to fail and get replaced with newer and inevitably more complex models, the days of picking up satellite images with an RTL-SDR and a few lines of Python are likely numbered.

AN ESP32 Walkie-Talkie, For Those Spy Radio Moments

One of the most thrilling childhood toys for the adventurous 1970s or 1980s kid was probably the toy walkie-talkie. It didn’t matter that they were a very simple AM low-end-VHF radio with a range of about 500m and a Morse key of debatable utility, you could talk clandestinely with your friends, and be a more convincing spy, or commando, or whatever was the game of the moment. It’s a memory conjured up for grown-ups by [Chris G] with his ESP32 walkie-talkie, which replaces a shaky 49MHz connection with one a bit more robust through the magic of WiFi.

The hardware is a collection of modules on a custom PCB, aside from the ESP32 there’s an I2S microphone and I2S audio amplifier, which along with battery and speaker are housed in a neat 3D printed case. I2S is used for simplicity, but there is no reason why analogue components couldn’t be used with a few code changes. Connection is made via UDP over a WiFi network, or should there be no network via ESP-NOW. We’re not sure the range will be brilliant with those little on-board chip antennas, but with the wide range of 2.4GHz antennas to be had it’s likely a better result could easily be achieved if the stock item disappoints.

We like this project, and it’s one that’s especially pleasing to see given that we saw the potential a few years ago in a less successful walkie-talkie using the ESP8266.

Satellite Ground Station Upcycles Trash

While the term “upcycle” is relatively recent, we feel like [saveitforparts] has been doing it for a long time. He’d previously built gear to pick up low-Earth orbit satellites, but now wants to pick up geosynchronous birds which requires a better antenna. While his setup won’t win a beauty contest, it does seem to work, and saved some trash from a landfill, too. (Video, embedded below.)

Small dishes are cheap on the surplus market. A can makes a nice feedhorn using a classic cantenna design, although that required aluminum tape since the only can in the trash was a cardboard oatmeal carton. The tape came in handy when the dish turned out to be about 25% too small, as well.

Continue reading “Satellite Ground Station Upcycles Trash”

Web Tool Cranks Up The Power On DJI’s FPV Drone

Apparently, if the GPS on your shiny new DJI FPV Drone detects that it’s not in the United States, it will turn down its transmitter power so as not to run afoul of the more restrictive radio limits elsewhere around the globe. So while all the countries that have put boots on the Moon get to enjoy the full 1,412 mW of power the hardware is capable of, the drone’s software limits everyone else to a paltry 25 mW. As you can imagine, that leads to a considerable performance penalty in terms of range.

But not anymore. A web-based tool called B3YOND promises to reinstate the full power of your DJI FPV Drone no matter where you live by tricking it into believing it’s in the USA. Developed by the team at [D3VL], the unlocking tool uses the new Web Serial API to send the appropriate “FCC Mode” command to the drone’s FPV goggles over USB. Everything is automated, so this hack is available to anyone who’s running a recent version of Chrome or Edge and can click a button a few times.

There’s no source code available yet, though the page does mention they will be putting up a GitHub repository soon. In the meantime, [D3VL] have documented the command packet that needs to be sent to the drone over its MODBUS-like serial protocol for others who might want to roll their own solution. There’s currently an offline Windows-only tool up for download as well, and it sounds like stand-alone versions for Mac and Android are also in the works.

It should probably go without saying that if you need to use this tool, you’ll potentially be violating some laws. In many European countries, 25 mW is the maximum unlicensed transmitter power allowed for UAVs, so that’s certainly something to keep in mind before you flip the switch. Hackaday isn’t in the business of dispensing legal advice, but that said, we wouldn’t want to be caught transmitting at nearly 60 times the legal limit.

Even if you’re not interested in fiddling with drone radios, it’s interesting to see another practical application of the Web Serial API. From impromptu oscilloscopes to communicating with development boards and conference badges, clever developers are already finding ways to make hardware hacking easier with this new capability.

[Thanks to Jules for the tip.]

Wet Country Wireless; How The British Weather Killed A Billion Pound Tech Company

A dingy and cold early February in a small British town during a pandemic lockdown is not the nicest time and place to take your exercise, but for me it has revived a forgotten memory and an interesting tale of a technology that promised a lot but delivered little. Walking through an early-1990s housing development that sprawled across the side of a hill, I noticed a couple of houses with odd antennas. Alongside the usual UHF Yagis for TV reception were small encapsulated microwave arrays about the size of a biscuit tin. Any unusual antenna piques my interest but in this case, though they are certainly unusual, I knew immediately what they were. What’s more, a much younger me really wanted one, and only didn’t sign up because their service wasn’t available where I lived.

All The Promise…

The TV advert looked promising in 1998.
The TV advert looked promising in 1998.

Ionica was a product of Cambridge University’s enterprise incubator, formed at the start of the 1990s with the aim of being the first to provide an effective alternative to the monopolistic British Telecom in the local loop. Which is to say that in the UK at the time the only way to get a home telephone line was to go through BT because they owned all the telephone wires, and it was Ionica’s plan to change all that by supplying home telephone services via microwave links.

Their offering would be cheaper than BT’s at the socket because no cable infrastructure would be required, and they would aim to beat the monopoly on call costs too. For a few years in the mid 1990s they were the darling of the UK tech investment world, with a cutting edge prestige office building just outside Cambridge, and TV adverts to garner interest in their product. The service launched in a few British towns and cities, and then almost overnight they found themselves in financial trouble and were gone. After their demise at the end of 1998 the service was continued for a short while, but by the end of the decade it was all over. Just what exactly happened?

Continue reading “Wet Country Wireless; How The British Weather Killed A Billion Pound Tech Company”

The $50 Ham: WSPR-ing Around The World

Everybody has a bucket list,  things to be accomplished before the day we eventually wake up on the wrong side of the grass. Many bucket-list items are far more aspirational than realistic; very few of us with “A trip to space” on our lists are going to live to see that fulfilled. And even the more realistic goals, like the trip to Antarctica that’s been on my list for ages, become less and less likely as your life circumstances change — my wife hates the cold.

Luckily, instead of going to Antarctica by myself — and really, what fun would that be? — I’ve recently been getting some of the satisfaction of world travel through amateur radio. The last installment of “The $50 Ham” highlighted weak-signal digital modes using WSJT-X; in that article, I mentioned a little about the Weak Signal Propagation Reporter, or WSPR. It’s that mode that let me test what’s possible with very low-power transmissions, and allowed me to virtually visit six continents including Antarctica and Sweden-by-way-of-Alaska.

Continue reading “The $50 Ham: WSPR-ing Around The World”