Tracking Nearly Every Aircraft With A Raspberry Pi

FlightAware is the premier site for live, real-time tracking of aircraft around the world, and for the last year or so, Raspberry Pi owners have been contributing to the FlightAware network by detecting aircraft flying overhead and sending that data to the FlightAware servers.

Until now, these volunteers have used Raspis and software defined radio modules to listen in on ADS-B messages transmitted from aircraft. With FlightAware’s new update to PiAware, their Raspberry Pi flight tracking software, Mode S transponders can also be detected and added to the FlightAware network.

Last year, FlightAware announced anyone with a Raspberry Pi, a software defined radio module, and an Internet connection would earn a free FlightAware enterprise account for listening to ADS-B transmitters flying overhead and sending that information to the FlightAware servers. ADS-B is a relatively new requirement for aviators that transmits the plane’s identification, GPS coordinates, altitude, and speed to controllers and anyone else who would like to know who’s flying overhead.

Mode S transponders, on the other hand, are older technology that simply transmits the call sign of an aircraft. There’s no GPS information or altitude information transmitted, but through some clever multilateration in the new PiAware release these transponders and planes can now be tracked.

To get the location of these transponders, at least three other PiAware boxes must receive a signal from a Mode S transponder. These signals, along with a timestamp of when they were received are then sent to the FlightAware servers where the location of a transponder can be determined.

The end result of this update is that FlightAware can now track twice as many aircraft around the world, all with a simple software update. It’s one of the most successful applications of crowdsourced software defined radio modules, and if you’d like to get in on the action, the FlightAware team put together a bulk order of ADS-B antennas.

LED Strip Notifies You Of The Light Show You’re Missing Outside

Unless you live way up in Canada, it’s not very likely that those gorgeous coronal mass ejections will collide with the atmosphere above your home. If they do, it’s a rare occurrence you wouldn’t want to miss. This is why [James] devised of a special alarm that would notify him when the Northern Lights may be visible in his neck of the woods. And what’s a better aurora alarm than a simulated aurora light show for your room?

[James] uses a Raspberry Pi to check data from Aurora Watch UK at Lancaster University for local activity. If the forecast reads that there may be some light above his home town in northern England, it triggers a NeoPixel LED strip to scroll through the color values of an actual aurora PNG image. This produces the same sporadic shifting of colors for a proximal ambient indoor lighting effect… though slightly less dramatic than the real thing. You can take a look at his Python script on github if you feel inspired.

Continue reading “LED Strip Notifies You Of The Light Show You’re Missing Outside”

Artificial Killing Machine

L.A. artist [Jonathan Fletcher Moore] sent us this fantastic tech-art piece on dehumanization and drone warfare. Talking too much about art is best left to the artists, so we’ll shut up and let you watch the video below the break.

artificial_killing_machine_0011_800The piece is essentially a bunch of old cap guns with servos that pull their triggers. A Raspberry Pi with an Internet connection fetches data on US drone strikes from www.dronestre.am and fires off a cap every time someone is killed. At the same time, the story version of the data is printed out in thermal paper that cascades onto the floor.

Viewers are encouraged to sit underneath all the cap guns and wait. Talk about creepy and suspenseful. And a tiny reflection of the everyday fears that people who live under drone-filled skies.

Continue reading “Artificial Killing Machine”

nintendo

Nin10do Retro Game Console Stands Above All Others

If your living room entertainment area is not home to a Raspberry Pi based retro game console, you no longer have any excuses. Break out your soldering iron and volt/ohm meter and preheat the 3d printer, because you will not be able to resist making one of the best retro game consoles we’ve ever seen – The Nin10do.

It’s creator is [TheDanielSpies]. Not only did he make the thing from scratch, he’s done an extraordinary job documenting all the build details, making it easier than ever to follow in his footsteps and make one of your own. He designed the case in Autodesk and printed it out with XT Co-polyester filament. He uses a Raspi of course, along with an ATX Raspi board from Low Power Labs to make the power cycling easier. There’s even a little stepper that opens and closes a cover that hides the four USB ports for controllers. Everything is tied together with Python, making the project super easy to modify and customize to your liking.

All code, schematics and .stl files are available on his github. It even has its own Facebook page! Be sure to check out the vast array of videos to help you along with your build.

Continue reading “Nin10do Retro Game Console Stands Above All Others”

Doom on Raspberry Pi

Writing Doom For The Raspberry Pi

We’ve all seen Doom played on the Raspberry Pi before… but this isn’t a port of the game. No, this was a school project at the Imperial College of London — writing the game in bare assembly. They wrote it from scratch.

bare metal doom thumbnail
Complete with a custom home made controller connected directly to the GPIO pins!

Yep. There’s not even an operating system on the Pi. It’s 9800 lines of bare metal ARM assembly. If that doesn’t hurt your brain we dunno what does!

They are using the official textures from the game, and it’s not quite a perfect replica — but it’s pretty darn close.

Part of the project was to build an emulator to make it easier to test the game, but it didn’t work out the greatest — so most of the actual game development was performed on the actual hardware. Yikes!

Stick around after the break to see Doom in all its former glory. Top notch work guys!

Continue reading “Writing Doom For The Raspberry Pi”

The First PipBoy We’ll See This Year

You heard that we’re shutting down Hackaday on November 11, 2015, right? That’s the release of Fallout 4, and trust me: I’m not getting anything done that day.  A new game in the Fallout series means more power armor cosplay builds, and hundreds of different wearable electronics from the friendly folks at Vault-Tec. I speak of the PipBoy, the wrist-mounted computer of the Fallout series, and [THEMCV] built the first one we’ll see this year. It won’t be the last.

The PipBoy [THEMCV] created is the 3000a model, the same one found in Fallout 3 and New Vegas. We’ve seen a few real-live versions of the PipBoy before; this one used the PipBoy prop that came with the Amazon exclusive special edition of Fallout 3. Things have changed in the years since the release of Fallout 3, and  to build his PipBoy, [THEMCV] just bought one from Shapeways.

The electronics consist of a Raspberry Pi Model A, 3.5″ LCD, a battery pack, and a great piece of software to emulate the software of the PipBoy 3000. It looks great, but [THEMCV] still needs to find a few retrofuturistic buttons and dials to complete the PipBoy experience.

Video below.

Continue reading “The First PipBoy We’ll See This Year”

The Live Still Life

Here’s a project that brings together artist [Justus Bruns] and engineers [Rishi Bhatnagar] and [Michel Jansen] to collaborate on an interactive work of Art. The Live Still Life is a classic still life, streamed live from India to anywhere in the world. It is the first step towards the creation of an art factory, where hundreds of these works will be made, preserved and streamed.

The Live Still Life is a physical composition of fresh fruit and vegetables displayed on a table with flatware, cutlery and other still objects. This is located in a wooden box in Bangalore. Every minute a photo is taken and the image is streamed, live, accessible instantly from anywhere in the world. Les Oiseaux de Merde’s Indian curator is on call to replace the fruit the minute it starts to rot so as to maintain the integrity of the image. In this way, while the image remains the same, the fight against decay is always present. The live stream can be viewed at this link.

The hardware is quite minimal. An internet connected Raspberry Pi model B,  Raspberry Pi camera module, a desk lamp for illumination and a wooden enclosure to house it all including the artwork. Getting the camera to work was just a few lines of code in Python. Live streaming the camera pictures took quite a bit more work than they expected. The server was written using a module called Exprestify written on top of Express JS to facilitate easier RESTful functions. For something that looks straightforward, the team had to overcome several coding challenges, so if you’d like to dig in to the code, some of it is hosted on Github or you can ask [Rishi] since he still needs to clean it up quite a bit.