Vintage Ribbon Cable Repair Saves Poqet PC

It sometimes seems as though computing power in your pocket is a relatively new phenomenon, but in fact there have been ultraportable computers since the 8-bit era. They started to become useful around the end of the 1980s though as enterprising manufacturers started cramming full-fat PC XTs into pocket form factors. Of these the one to own was the Poqet PC, a slim clamshell design that would run for ages on a pair of AA cells . If you have one today you’d be lucky if its display ribbon cable is without faults though, and [Robert’s Retro] is here with a fix previously thought impossible.

A large proportion of the video below the break is devoted to dismantling the unit, no easy task. The cable once exposed is found to have delaminated completely, and he takes us through the delicate task of attaching a modern equivalent. We particularly like the way in which the cable’s own springiness is used to retract it. The result has a white cable rather than the original black, but that’s a small price to pay for a machine that works rather than a broken paperweight.

If early pocket computing is your thing, it’s a subject we’ve covered before.

Continue reading “Vintage Ribbon Cable Repair Saves Poqet PC”

An AVO 8 Teardown

AVO meters — literally amp, volt, ohm meters — are not very common in North America but were staples in the UK. [TheHWcave] found an AVO 8 that is probably from the 1950s or 1960s and wanted to get it working. You can see the project in the video below.

These are very different from the standard analog meters many of us grew up with. [TheHWcave] shows how the dual range knobs work together to set the measurement. There are three separate ohm settings, and each one has its own zero pot. We were surprised that the meter didn’t have a parallax-correcting mirror.

Other than dirty switch contacts, the voltage measurements still worked. After cleaning the contacts, most of the ranges worked well, although there were still some issues. Some of the resistor ranges were not working, either. Inside the case were an old D cell and a square battery, a B121 15 V battery. Replacing the 15 V battery with a bench supply made things better.

Some plugins are available to allow the meter to read low resistance or high currents. We thought using the soldering gun as a current source was clever. Once he gets it working, he opens the box around the 14:30 mark.

The inside was all hand-wiring and power resistors. Of course, there are also a ton of contacts for the switches. So it isn’t just an electrical design, but a mechanical one, too. The electrical design is also interesting, and an analysis of it winds the video down.

[Jenny List] has a soft spot for these meters, too. Why use an old meter? If you have to ask…

Continue reading “An AVO 8 Teardown”

Five Ways To Repair Broken PCB Traces

When everything used wires, it was easy to splice them or replace them. Not so much with PC boards, but everyone has their favorite method for repairing a broken trace. [Mr. SolderFix] has his five favorite ways, as you can see in the video below.

Of course, before you can repair a trace, you probably have to expose it since most boards have solder mask now. Unless you plan to shut the trace at both ends, exposing the actual trace is probably the first step.

Continue reading “Five Ways To Repair Broken PCB Traces”

Building A Cassette Deck Controller To Save A Locked Out Car Stereo

Cars have had DRM-like measures for longer than you might think. Go back to the 1990s, and coded cassette decks were a common way to stop thieves being able to use stolen stereos. Sadly, they became useless if you ever lost the code. [Simon] had found a deck in great condition that was locked out, so he set about building his own controller for it. 

The build relies on the cassette transport of a car stereo and a VFD display, but everything else was laced together by Simon. It’s a play-only setup, with no record, seeing as its based on an automotive unit. [Simon]’s write up explains how he reverse engineered the transport, figuring out how the motors and position sensors worked to control the playback of a cassette.

[Simon] used an Atmega microcontroller as the brains of the operation, which reads the buttons of the original deck via an ADC pin to save I/O for other tasks. The chip also drives the VFD display for user feedback, and handles auto reverse too. The latter is thanks to the transport’s inbuilt light barriers, which detect the tape’s current status. On the audio side, [Simon] whipped up his own head amplifier to process the signal from the tape head itself.

Fundamentally, it’s a basic build, but it does work. We’ve seen other DIY tape decks before, too. There’s something about this format that simply refuses to die. The fans just won’t let Compact Cassette go down without a fight. Video after the break.

Continue reading “Building A Cassette Deck Controller To Save A Locked Out Car Stereo”

Everyone Needs A 1950s Signal Generator In Their Life

At Hackaday, we comb the world of tech in search of good things to bring you. Today’s search brought up something very familiar, [Jazzy Jane] has an Advance E1 tube signal generator, the same model as the unit on the shelf above where this is being written. It’s new to her, so she’s giving it a teardown and fixing any safety issues before powering it on.

For a 70+ year old unit, the quality of these instruments was such that they remain useful and reliable to this day. Unsurprisingly a few things need looking at, such as an aged mains lead and a pair of filter caps in the power supply which haven’t aged well. These parts failed on the E1 here too, and while she’s taking the time to order appropriate replacements we have to admit to being cheapskates and robbing parts with an appropriate working voltage for ours from a nearby PC power supply.

Where this one becomes rather interesting is in an extra switch and socket. It’s a wafer switch with a load of capacitors, and the best guess is it provides some adjustability for the inbuilt audio oscillator which had a fixed frequency on stock models. This is part one of a series though, so we’re looking forward to finding out its purpose in the next installment. Take a look at the video below the break, and if that’s not enough, we seem to have had more than one piece of vintage British test equipment here of late.

Continue reading “Everyone Needs A 1950s Signal Generator In Their Life”

Recovering An Agilent 2000a/3000a Oscilloscope With Corrupt Firmware NAND Flash

Everyone knows that you can never purchase enough projects off EBay, lest boredom might inadvertently strike. That’s why [Anthony Kouttron] got his mitts on an Agilent DSO-X 2014A digital oscilloscope that was being sold as defective and not booting, effectively just for parts. When [Anthony] received the unit, this turned out to be very much the case, with the front looking like it got dragged over the tarmac prior to having the stuffing beaten out of its knobs with a hammer. Fortunately, repairing the broken encoder and the plastic enclosure was easy enough, but the scope didn’t want to boot when powered on. How bad was the damage?

As [Anthony] describes in the article, issues with this range of Agilent DSOs are well-known, with for example the PSU liking to fry the primary side due to soft power button leaving it powered 24/7 with no cooling. The other is corrupted NAND storage, which he confirmed after figuring out the UART interface on the PCB with the ST SPEAr600 ARM-based SoC. Seeing the sad Flash block decompression error from the Windows CE said enough.

This led him down the rabbithole of finding the WinCE firmware images (nuked by Keysight, backed up on his site) for this scope, along with the InfiniiVision scope application. The former is loaded via the bootloader in binary YMODEM mode, followed by installing InfiniiVision via a USB stick. An alternate method is explained in the SPEAr600 datasheet, in the form of USB BootROM, which can also be reached via the bootloader with some effort.

As for the cause of the NAND corruption, it’s speculated that the scope writes to the same section of NAND Flash on boot, with the SPEAr600’s Flash controller documentation not mentioning wear leveling. Whether that’s true or not, at least it can be fixed with some effort even without replacing the NAND Flash IC.

A 1940s Car Radio Receives Some Love

The entertainment systems in modern vehicles is akin to a small in-dash computer, and handles all manner of digital content. It probably also incorporates a radio, but increasingly that’s treated as something of an afterthought. There was a time though when any radio in a car was a big deal, and if you own a car from that era it’s possible that you’ve had to coax an aged radio into life. [The Radio Mechanic] is working on a radio from a 1946 Packard, which provides a feast for anyone with a penchant for 1940s electronics.

The unit, manufactured by Philco, is an all-in-one, with a bulky speaker in the chassis alongside the tubes and other components. It would have sat behind the dash in the original car, so some external cosmetic damage is not critical. Less easy to pass off is the cone rubbing on the magnet, probably due to water damage over the last eight decades. Particularly interesting are the controls, as we’re rather enamored with the multicolored filter attached to the tone control. A laser cutter makes short work of recreating the original felt gasket here.

The video below is the first of a series on this radio, so we don’t see it working. Ahead will be a lot more cleaning up and testing of components, and we’d expect a lot of those paper capacitors to need replacement. We can almost smell that warm phenolic smell.

If tube radio work is your thing, we’ve been there before.

Continue reading “A 1940s Car Radio Receives Some Love”