The film scanner [xssfox] found, in the center of a table, with other stuff strewn across the table

Answering All Your ISCSI Scanner Questions

iSCSI is a widely used protocol for exposing SCSI devices over a network connection, and some scanners have in the past been equipped with SCSI ports. So, could you have an iSCSI network scanner? [xssfox] details her journey making a Canoscan FS4000US film scanner work over iSCSI, sparked by someone’s overly-confident StackOverflow comment that it couldn’t be done. Nothing in the spec said it couldn’t actually work, however, and after figuring out a tentative architecture, a hardware setup was put together.

No flatbed scanners with SCSI ports could be found on the cheap, so a film scanner had to be procured. After figuring out a few hitches with the loading mechanism and getting a test image locally, it was time to try and build up the software setup, tearing through SCSI compatibility and cabling, driver and PCI pass-through woes, bluescreens, and intermediate software having dropped some of the necessary features by now. Still, [xssfox] eventually exported the scanner as an iSCSI target – and, on the other end of the network, successfully connected to it and completed a scan. The StackOverflow answer was wrong, after all.

It’s fun to see how far old technology can go, and get answers to questions you never knew you had. Whether you’re reminiscing about SCSI days or wondering what the technology about, we’ve talked about it aplenty, from a retrospective to modern-day experiments, repurposing old SCSI hardware for modern SATA ports, a Raspberry Pi implementation, an emulator, and a fair bit more.

We thank [Valentijn Sessink] and [adistuder] for sharing this with us!

The Minimalistic Dillo Web Browser Is Back

Over the decades web browsers have changed from the fairly lightweight and nimble HTML document viewers of the 1990s to today’s top-heavy browsers that struggle to run on a system with less than a quad-core, multi-GHz CPU and gigabytes of RAM. All but a few, that is.

Dillo is one of a small number of browsers that requires only a minimum of system resources and will happily run on an Intel 486 or thereabouts. Sadly, the project more or less ended back in 2016 when the rendering engine’s developer passed away, but with the recent 3.10 release the project seems to be back on track, courtesy of efforts by [Rodrigo Arias Mallo].

Although a number of forks were started after the Dillo project ground to a halt, of these only Dillo+ appears to be active at this point in time, making this project revival a welcome boost, as is its porting to Atari systems. As for Dillo’s feature set, it boasts support for a range of protocols, including Gopher, HTTP(S), Gemini, and FTP via extensions. It supports HTML 4.01 and some HTML 5, along with CSS 2.1 and some CSS 3 features, and of course no JavaScript.

On today’s JS-crazed web this means access can be somewhat limited, but maybe it will promote websites to have a no-JS fallback for the Dillo users. The source code and releases can be obtained from the GitHub project page, with contributions to the project gracefully accepted.

Thanks to [Prof. Dr. Feinfinger] for the tip.

Protoboard Z80 Computer Teaches The Basics

As curious people, we’re all incredibly fortunate to live in an age where information can so easily be obtained. If you want to learn how something works, from a cotton gin to an RBMK reactor, you’re just a few keystrokes away from articles, diagrams, and videos on the subject. But as helpful as all of that information can be, we also know that there’s no substitute for hands-on experience.

While we can’t recommend you try building a miniature graphite-moderated nuclear reactor, there’s plenty of other devices that you can study by constructing your own functioning model. For example, when [Jorisclayton] wanted to really know what was going on inside a computer, they decided to go back to basics and build their own Z80 machine. To maximize the experience, they skipped any of the existing kit designs and instead wired the whole thing up by hand across a few perfboards.

The main board contains a 4 MHz Z80 processor, paired with 32K ROM and 64K RAM. Here you’ll also find the clock generator, I/O decoder, serial port, voltage regulator, and a trio of expansion slots that use a long strip of 2.54 mm pin headers as the interface. In the first expansion slot you’ve got a primordial “graphics card” based around the TMS9918 video display controller (VDC) and 16K of additional RAM. The second expansion card has a CompactFlash reader and an LED array mapped to I/O address 0x00h so it can be used for various notifications.

[Jorisclayton] says the final expansion board is still being worked on, but the idea is for it to handle user input through a PS/2 keyboard connector, as well as provide ports for a pair of Super Nintendo (or compatible) controllers. Everything is held together with a minimalist 3D printed frame to show off all that careful soldering.

Obviously there’s no PCB design files to share for this one, but [Jorisclayton] has posted a schematic for wiring everything up if you’re looking for resources to build your own Z80 computer. Sure the chips themselves might no longer be in production, but that doesn’t mean this venerable CPU is going anywhere just yet.

The ZX Spectrum Takes To The Airwaves Again

A perk of writing for Hackaday comes in the vast breadth of experience represented by our fellow writers. Through our colleague [Voja Antonić] for example we’ve gained an unparalleled insight into the cutting edge of 8-bit computing in 1980s Yugoslavia, of his Galaksija home computer, and of software being broadcast over [Zoran Modli]’s Ventilator 202 radio show.

We’re strongly reminded of this by hearing of the Slovenian Radio Študent broadcasting the classic Slovenian ZX Spectrum text adventure game Kontrabant 2, at the behest of the  Slovenian Computer History Museum. It’s been four decades and a lot of turbulent history, but once again 8-bit code will be heard on FM in Europe.

Some of our younger readers may never have experienced the joy of loading software from cassette, but in those days it represented a slow alternative to the eye-wateringly expensive floppy drives of the day. The software was represented as a serial bitstream translated into tones and recorded on a standard cassette recorder which was standard consumer electronics back then, and when played back through a speaker it was an ear-splitting sound with something in common with that of a modem handshake from a decade or more later. This could easily be transmitted over a radio station, and a few broadcasters tried experimental technology shows doing just that.

We haven’t heard from any listeners who managed to catch the game and run it on their Spectrum, but we hope that Slovenia’s retrocomputing community were out in force even if Audacity and a n emulator replaced the original hardware. Given that more than one hacker camp in our community has sported radio stations whether legal or not, it would be nice to hear the dulcet tones of 8-bit software on the airwaves again.

Meanwhile if cassettes are too cheap for you, feast your eyes on Sir Clive’s budget storage solution.

Thanks [Stephen Walters].

Z80s From The ’80s Had Futuristic Design

Ever heard of a Dutch company called Holborn (literally, born in Holland)? We hadn’t either, but [Bryan Lunduke] showed us these computers from the early 1980s, and we wondered if they might have appeared in some science fiction movies. They definitely look like something from a 1970s movie space station.

The company started out tiny and only lasted a few years. The Holborn 9100 looked like a minicomputer and, honestly, other than the terminal, looks more like an air conditioner or refrigerator. While it was a Z-80 system, it was clearly aimed at business. The processor ran at 3.5 MHz, there was 72K of RAM that could expand to 220 K — a whopping amount for the early ’80s. They also could accept loads of 8-inch floppies. It even had a light pen, which seems exotic today but was actually fairly common back then.

Continue reading “Z80s From The ’80s Had Futuristic Design”

Retrogadgets: The Ageia PhysX Card

Old computers meant for big jobs often had an external unit to crunch data in specific ways. A computer doing weather prediction, for example, might have an SIMD (single instruction multiple data) vector unit that could multiply a bunch of numbers by a constant in one swoop. These days, there are many computers crunching physics equations so you can play your favorite high-end computer game. Instead of vector processors, we have video cards. These cards have many processing units that can execute “kernels” or small programs on large groups of data at once.

Awkward Years

However, there was that awkward in-between stage when personal computers needed fast physics simulation, but it wasn’t feasible to put array processing and video graphics on the same board. Around 2006, a company called Ageia produced the PhysX card, which promised to give PCs the ability to do sophisticated physics simulations without relying on a video card.

Keep in mind that when this was built, multi-core CPUs were an expensive oddity and games were struggling to manage everything they needed to with limited memory and compute resources. The PhysX card was a “PPU” or Physics Processor Unit and used the PCI bus. Like many companies, Ageia made the chips and expected other companies — notably Asus — to make the actual board you’d plug into your computer.

Continue reading “Retrogadgets: The Ageia PhysX Card”

RISC OS Gets An Update

There should be rejoicing among fans of the original ARM operating system this week, as the venerable RISC OS received its version 5.30 update. It contains up-to-date versions of the bundled software as well as for the first time, out-of-the-box WiFi support, and best of all, it can run on all Raspberry Pi models except the Pi 5. If you’ve not encountered RISC OS before, it’s the continuing development of the OS supplied with the first ARM product, the Acorn Archimedes. As such it’s a up-to-date OS but with an interface that feels like those of the early 1990s.

We like RISC OS here, indeed we reviewed the previous version this year, so naturally out came the Hackaday Pi 3 and an SD card to run it on. It’s as smooth and quick as it ever was, but sadly try as we might, we couldn’t get the Pi’s wireless interface to appear in the list of available network cards. This almost certainly has more to do with us than it does the OS, but it would have been nice to break free from the tether of the network cable. The included Netsurf 3.11 browser is nippy but a little limited, and just as it was during our review, sadly not capable of editing a Hackaday piece or we’d be using it to write this.

It’s great to see this operating system still under active development, and we can see that it so nearly fulfills our requirement here for a lightweight OS on the road. For those of us who used the original version, then called Arthur, it’s a glimpse of how desktop computing could, or perhaps even should, have been.