students overlooking their rope-traversing robots

Crawler Challenge: Building Rope-Traversing Robots

Rope-climbing robots are the stuff of engineering dreams. As kids, didn’t we all clutter our family home with constructions of towers and strings – Meccano, or Lego – to have ziplines spanning entire rooms? Good for the youngsters of today, this has been included in school curricula. At the University of Illinois, the ME 370 students have been given the task of building a robot that can hang from a rope and walk across it—without damaging the rope. The final projects show not only how to approach tricky design problems, but also the creative solutions they stumbled upon.

Imagine a tiny, rope-climbing walker in your workshop—what could you create?

The project is full of opportunities for those thinking out of the box. It’s all about the balance between innovation and practicality: the students have to come up with a solution that can move at least 2 meters per minute, fits in a shoebox, and has some creative flair—no wheels allowed! The constraints provide an extra layer of challenge, but that’s where the fun lies. Some students use inverted walkers, others take on a more creature-like approach. The clever use of motors and batteries shows just how far simple tech can go when combined with a bit of engineering magic.

This project is a fantastic reminder that even small, seemingly simple design challenges can lead to fascinating creations. It invites us adults to play, and by that, we learn: a win-win situation. You can find the original article here, or grab some popcorn and watch the video below.

Continue reading “Crawler Challenge: Building Rope-Traversing Robots”

A Self Balancing Bike For Crash Dummy Billy

We aren’t sure there’s enough information in the [We Make Machines’] video to easily copy their self-balancing bike project, but if you want to do something similar, you can learn a lot from watching the video. Building sufficient gyros to keep the bike stable required quite a bit of trial and error.

There are some tricks to getting a stable heavy weight to rotate without a lot of vibration and problems. The gyros go on the rider’s saddle, so you aren’t going to be able to ride in the normal fashion. However, a substantial motor drives the wheels so there’s no need to pedal.

The first attempt to self-balance stayed stable for about 10 seconds. Some of it was fine-tuning code, but noise from the gyros also threw off the angle sensor. A higher-quality sensor seemed promising, but it didn’t really fix the problem. Instead of using PID, the guys tried an LQR (Linear Quadratic Regulator) algorithm. Once that was sorted and a servo allowed for steering, it was time to let the bike roam free.

Continue reading “A Self Balancing Bike For Crash Dummy Billy”

[Wills] and his purple DIY sorting hat

From Felt To Fate: Building Your Own Sorting Hat

Ever wondered how it feels to have the Sorting Hat decide your fate? [Will Dana] wanted to find out, so he conjured a bit of Hogwarts magic, and crafted a fully animatronic Sorting Hat from scratch. In the video below, he covers every step of bringing this magical purple marvel to life—from rapid joystick movements to the electronics behind it all.

The heart of the project is two 9g servos—one actuates the mouth, and the other controls the eyebrows—powered by an ESP32 microcontroller. Communication between two ESP32 boards ensures smooth operation via the ESP-NOW protocol, making this a wireless wonder. The design process involved using mechanical advantage to solve jittery servo movements, a trick that will resonate with anyone who’s fought with uncooperative motors.

If animatronics or themed projects excite you, Hackaday has covered similar builds, from a DIY BB-8 droid to a robot fox.

Continue reading “From Felt To Fate: Building Your Own Sorting Hat”

A Simple Robot For Learning About Robotics

Robots are super interesting, but you probably shouldn’t start learning about them with a full-sized industrial SCARA arm or anything. Better to learn with something smaller and simpler to understand. This simple Arduino-powered robot is called Bug, and it aims to be just that.

The design comes to us from [Joshua Stanley]. It’s based around the ubiquitous Arduino Uno, paired with a motor control and I/O shield for more connectivity. The robot uses treads for locomotion—each side has two wheels wrapped in a belt for grip. The robot has a small DC gearmotor driving each belt so it can be driven forwards, backwards, and steered differentially. To perceive the world, it uses an off-the-shelf ultrasonic transceiver module, and an NRF24L01 module for remote control. All this is wrapped up in a basic 3D-printed housing that positions the ultrasonic modules effectively as “eyes” which is kind of cute, all in all.

Despite its small size and simple construction, Bug gets around perfectly well in testing on an outdoor footpath. It even has enough torque to flip itself up at full throttle. For now, [Joshua] notes it’s a glorified remote control car, but he plans to expand it further with more functionality going forward.

We see lots of educational robots around these parts, like this nifty little robot arm. Video after the break.

Continue reading “A Simple Robot For Learning About Robotics”

Render of life-size robot rat animatronic on blue plane

Robot Rodents: How AI Learned To Squeak And Play

In an astonishing blend of robotics and nature, SMEO—a robot rat designed by researchers in China and Germany — is fooling real rats into treating it like one of their own.

What sets SMEO apart is its rat-like adaptability. Equipped with a flexible spine, realistic forelimbs, and AI-driven behavior patterns, it doesn’t just mimic a rat — it learns and evolves through interaction. Researchers used video data to train SMEO to “think” like a rat, convincing its living counterparts to play, cower, or even engage in social nuzzling. This degree of mimicry could make SMEO a valuable tool for studying animal behavior ethically, minimizing stress on live animals by replacing some real-world interactions.

For builders and robotics enthusiasts, SMEO is a reminder that robotics can push boundaries while fostering a more compassionate future. Many have reservations about keeping intelligent creatures in confined cages or using them in experiments, so imagine applying this tech to non-invasive studies or even wildlife conservation. In a world where robotic dogs, bees, and even schools of fish have come to life, this animatronic rat sounds like an addition worth further exploring. SMEO’s development could, ironically, pave the way for reducing reliance on animal testing.

Continue reading “Robot Rodents: How AI Learned To Squeak And Play”

Brain on a chip setup with a hand and a dropper

Gray Matter On A Chip: Building An Artificial Brain With Luminol

Ever wondered if you could build a robot controlled by chemical reactions? [Marb] explores this wild concept in his video, merging chemistry and robotics in a way that feels straight out of sci-fi. From glowing luminol reactions to creating artificial logic gates, [Marb]—a self-proclaimed tinkerer—takes us step-by-step through crafting the building blocks for what might be the simplest form of a chemical brain.

In this video, the possibilities of an artificial chemical brain take centre stage. It starts with chemical reactions, including a fascinating luminol-based clock reaction that acts as a timer. Then, a bionic robot hand makes its debut, complete with a customised interface bridging the chemical and robotic worlds. The highlight? Watching that robotic hand respond to chemical reactions!

The project relies on a “lab-on-a-chip” approach, where microfluidics streamline the processes. Luminol isn’t just for forensic TV shows anymore—it’s the star of this experiment, with resources like this detailed explanation breaking down the chemistry. For further reading, New Scientist has you covered.

We’ve had interesting articles on mapping the human brain before, one on how exactly brains might work, or even the design of a tiny robot brain. Food for thought, or in other words: stirring the gray matter.

Continue reading “Gray Matter On A Chip: Building An Artificial Brain With Luminol”

DIY Pipe Inspector Goes Where No Bot Has Gone Before

If you think your job sucks, be grateful you’re not this homebrew sewer inspection robot.

Before anyone gets upset, yes we know what [Stargate System] built here isn’t a robot at all; it’s more of a remotely operated vehicle. That doesn’t take away from the fact that this is a very cool build, especially since it has to work in one of the least hospitable and most unpleasant environments possible. The backstory of this project is that the sewer on a 50-year-old house kept backing up, and efforts to clear it only temporarily solved the problem. The cast iron lateral line was reconfigured at some point in its history to include a 120-degree bend, which left a blind spot for the camera used by a sewer inspection service. What’s worse, the bend was close to a joint where a line that once allowed gutters and foundation drains access to the sewer.

To better visualize the problem, [Stargate] turned to his experience building bots to whip up something for the job. The bot had to be able to fit into the pipe and short enough to make the turn, plus it needed to be — erm, waterproof. It also needed to carry a camera and a light, and to be powered and controlled from the other end of the line. Most of the body of the bot, including the hull and the driving gear, was 3D printed from ABS, which allowed the seams to be sealed with acetone later. The drive tracks were only added after the original wheels didn’t perform well in testing. Controlling the gear motors and camera was up to a Raspberry Pi Zero, chosen mostly due to space constraints. An Ethernet shield provided connectivity to the surface over a Cat5 cable, and a homebrew PoE system provided power.

As interesting as the construction details were, the real treat is the down-hole footage. It’s not too graphic, but the blockage is pretty gnarly. We also greatly appreciated the field-expedient chain flail [Stargate] whipped up to bust up the big chunks of yuck and get the pipe back in shape. He did a little bit of robo-spelunking, too, as you do.

And no, this isn’t the only sewer bot we’ve ever featured.

Continue reading “DIY Pipe Inspector Goes Where No Bot Has Gone Before”