Sphere Morphing Hexabot Now Rolls Around

[Zenta] has been building his MorpHex rolling hexapod for nearly a year now, and good things come to those who wait. After a ton of development and fabrication, [Zenta] finally has his mechanical jellyfish robot rolling and walking around.

This isn’t the first time we’ve seen [Zenta]‘s MorpHex robot in action. A year ago, we saw the beginnings of the project with that included 25 servos mounted on a custom chassis. Last winter, the top hemisphere of the MorpHex was added, but rolling locomotion was still on the drawing board. A lot has changed since then, and now [Zenta]’s robot can roll or walk across the floor.

From the video (available after the break), we see that [Zenta] kept the one degree of freedom for the panels on the upper cylinder. He’s thinking about making the MorpHex more symmetrical; just copying the plans for the bottom hemisphere onto the top, for instance. This plan would allow the MorpHex to roll in a straight line, so we can’t wait to see what [Zenta] cooks up next.

Continue reading “Sphere Morphing Hexabot Now Rolls Around”

Powering A Robot With A Macbook Battery

When [Soo-Hyun]’s friend had an Apple Macbook Pro battery that began to swell, his friend did the reasonable thing and donated it to be used in a robot. Now [Soo-Hyun]’s kiwi drive robot is powered by a gigantic LiPo battery, giving it a huge range and a very fast top speed.

The defunct laptop battery that formerly powered a 15″ macbook pro is three battery packs of two cells in parallel, delivering 12.6 Volts. To get the power to the robot, [Soo-Hyun] etched a simple PCB that fit into the slot in the battery. A little bit of soldering later, and mounting the battery as a shark fin because of the 8×8 inch limitation of maze-solving robots, the power plant was complete.

Using a bulging LiPo battery probably isn’t the smartest idea (listen for the great line, “it got the camera and my face” at 4:08), but as long as [Soo-Hyun] keeps an eye on the battery as it’s charging, it should be alright.

Check out the video of the robot zipping around on 12.6 Volts after the break.

Continue reading “Powering A Robot With A Macbook Battery”

Sand Flea Literally Leaps Tall Buildings In A Single Bound

The hidden abilities of this robot that is no larger than a dinner plate are quite impressive. It doesn’t let an obstacle like a building get in its way. The Sand Flea, like its namesake, posses a remarkable jumping ability. When it encounters a tall obstruction two levers incline the front of the robot and it launches itself up to thirty feet in the air. In the case of a one-story build this means it will end up on the roof, and it’ll do so much quicker and more reliably than any wall climber we’ve seen.

It’s being developed for the US Army by Boston Dynamics, and this isn’t the first time we’ve seen the concept. But the video after the break gives a much better look than the grainy twenty-second clip from last year. Of course they’re not giving up too many details so we have to guess a bit. We’d wager the launching mechanism is a solenoid, but at about eleven pounds you need a lot of juice to get that much of a jump. We suppose it’s also possible that there’s an explosive system like the butane combustion used in a framing nailer. The video summary mentions that there’s a stabilization system to keep the body oriented during flight. That’s got to be a gyroscope. Let us know what you think in the comments. Continue reading “Sand Flea Literally Leaps Tall Buildings In A Single Bound”

Loudest Telepresence Robot Ever

This telepresence robot will never let your Skype callers sneak up on you. [Priit] built the project, which he calls Skype Got Legs, so that his distant friends could follow him around the house during chats. But as you can hear after the break, the electric drills used to motorize the base are extremely loud.

Noise pollution aside, we like the roughness of the hack. It’s utilitarian but seems to work quite well. Commands are sent via the web using a combination of Ajax and PHP function calls. The two drills are controlled by an Arduino via a couple of automotive relays. The drills are powered by their original rechargeable battery packs. So as not to alter those batteries, [Priit] figured out a way to use synthetic wine bottle corks as a connector. They’ve been cut to size, and had tinned wires pushed through holes in them. Now, when he inserts the altered corks they press the wires against the battery contacts. Continue reading “Loudest Telepresence Robot Ever”

Self-stabilizing Autonomous Bicycle

For [Gunnar]’s diploma thesis, he wanted to build an autonomous bicycle. There’s an obvious problem with this idea, though: how, exactly does a robotic bicycle stand upright? His solution to balancing the bicycle was a reaction wheel that keeps the bicycle upright at all times.

A bicycle is basically an inverted pendulum; something we’ve seen controlled in a number of projects. To balance his driver-less bike, [Gunnar] used a stabilizing wheel and an IMU to make sure the bicycle is always in the upright position. The bike measure the tilt and angular velocity of itself, along with the speed of the stabilizing wheel. To correct a tilt to the left, the stabilizing wheel spins clockwise, and corrects a rightward tilt by spinning counterclockwise.

While [Gunnar]’s solution of a bike wheel used as a gyroscope is clever – it uses common bicycle wheel, hugely reducing costs if someone wants to replicate this project – there’s not a whole lot of ground clearance. The size of the stabilizing wheel could probably be reduced by replacing the 7.4 kg steel wheel with a Tungsten, Osmium, or Lead disk, possibly becoming so small it could fit inside the frame. Still, though, a very nice build that is sure to turn a few heads.

Continue reading “Self-stabilizing Autonomous Bicycle”

Adding Speech Control To An Old Robotic Arm

[Joris Laurenssen] has been hanging onto this robotic arm for about twenty years. His most recent project uses some familiar tools to add voice control for each of the arm’s joints.

The arm has its own controller which connects via a DB-25 port. [Joris’] first task was to figure out what type of commands are being sent through the connection. He did some testing to establish the levels of the signals, then hooked up his Arduino and had it read out the values coming through the standard parallel connection. This let him quickly establish the simple ASCII character syntax used to command movement from the device. There’s only eight command sets, and it didn’t take much work to whip up a sketch that can now drive the device.

The second portion of the project is to use voice commands to push these parallel signals to the arm. Instead of reinventing the wheel he decided to use the speech recognition feature of his Android phone. He used Scripting Layer for Android (SL4A) and a Python script to interpret commands, push them to his computer via Telnet, and finally drive the arm. We’ve embedded the video demo after the break. He gives the commands in Dutch but he overlaid comments in English so you can tell what’s going on.

Continue reading “Adding Speech Control To An Old Robotic Arm”

Robot Jellyfish Fueled By Hydrogen From The Water Around It

RoboJelly is certainly not what we’re used to seeing when it comes to robots. Instead of a cold metallic skeleton, this softie is modeled after jellyfish which have no bones. But that’s not the only thing that’s unusual about it. This robot also doesn’t carry its own power source. It gets the energy needed for locomotion from the water around it.

Artificial muscles are what give this the movement seen in the clip after the break. These muscles react to heat, and that heat is produced through a chemical reaction. The construction method starts with the muscle material, which is then covered in carbon nanotubes, and finally coated with black platinum dust. Sounds a bit like witchcraft, huh (Eye of newt, dragon heart string, etc.)? We certainly don’t have the chemistry background to understand how this all works. But we are impressed. So far it doesn’t have the ability to change direction, the flexing of all of the muscle material happens at the same time. But the next step in their research will be finding a way to route the “fuel” to give it some direction.

Edit – Looks like it is fueled externally. The actual study is here, but you need to log in to download it.

This brings another jellyfish-inspired robot to mind. Check out FESTO’s offering which flies through the air with the greatest of ease.

Continue reading “Robot Jellyfish Fueled By Hydrogen From The Water Around It”