Hidden RFID Reader Locks Workstation Unless Keys Are Present

We don’t know how [Kristoffer Marshall] found himself with free time at work, but he used it to beef up his computer security. Above is the finished project. There is literally nothing to see here. He’s rigged up a hidden RFID reader which locks and unlocks his workstation.

The security of the system depends on xscreensaver, which has a password protected lock feature already built into it. When the tag is removed from the reader’s field it fires up the screensaver using a Perl script.

But waking up from the screensaver is a bit more tricky. The package doesn’t allow you to wake it from the command line — most likely for security. He found the xdotool to be of great use here. It is a command line tool which simulates keyboard and mouse entry. His script detects when the xscreensaver password prompt is on the screen and uses the xdotool to fill in [Kristoffer’s] password. Since the script knows what has focus it won’t give away your password by accident.

See the complete setup in the clip after the break.

Continue reading “Hidden RFID Reader Locks Workstation Unless Keys Are Present”

Spoofing WiFi AP Based Geolocation

[Pierre Dandumont] just finished up a little project that will give Google Maps’ location feature a run for its money. It’s a technique that spoofs WiFi networks in order to relocate the positional data reported via WiFi networks.

He starts with an explanation of the different ways modern devices acquire location data. GPS is the obvious, and mobile network triangulation is pretty well know. But using WiFi networks may be a new trick for you. We’re not 100% certain but we think Google is able to look up location data based on known IP addresses for WiFi access points (this would be a good comments discussion). To trick the system all you have to do is feed some captured AP data into the computer before Google Maps tried to lock onto a location. The video after the break shows Maps with the legit location displayed. After running a quick script whose output is shown above the map position is changed to the spoofed location.

Continue reading “Spoofing WiFi AP Based Geolocation”

Hacking Coin Collection

Coin Acceptor

Devices that collect coins for payment typically use standardized coin acceptors like the one shown here. These devices use a protocol called ccTalk to let the system know what coins were inserted. [Balda] has built tools for implementing the ccTalk protocol to let you play around with the devices. He also gave a talk at DEF CON (PDF) about the protocol.

[Balda] got started with ccTalk because he wanted to add a coin acceptor to a MAME cabinet, and had a coin acceptor. His latest project converts ccTalk to standard keyboard keystrokes using a Teensy. The MAME cabinet can then interpret these and add to the player’s credits.

There’s two interesting sides to this project. By providing tools to work with ccTalk, it’s much easier to take a used coin acceptor off eBay and integrate it into your own projects. On the other hand, these acceptors are used everywhere, and the tools could allow you to spoof coins, or even change settings on the acceptor.

Just Swipe Your Card And Enter The Pin… What Could Go Wrong?

We do hope this project makes you shiver.

“Financial risks” is an audiovisual installation that reacts when you swipe your credit card and prints an odd looking receipt if you type in your pin-code. Even though the website contains few technical details (read none) about the build, we chose to feature the project as we find his intent interesting:

‘Financial Risks’ installation is a project designed to present an ironical viewpoint on encoded wallets, as a data input interface invites to overcome fear of impossibility to control spread of confidential information for the sake of curiosity of interaction with an object of art.

The piece consists of 6 bank card readers, a hardware system of sound and video synthesis, a keyboard for pin code entering, a 2-channel sound system and a cash register printer configured to print images. Up to 6 cards simultaneously may be used for playing.

We do hope that nothing is stored in the platform’s memory… but is the installation monitored?

Dead Drop Concept Inspired By [Ender Wiggin] Family

encrypted-dead-drop-concept

[Tyler Spilker’s] DDD project is a Digital Dead Drop system based on Python and a Raspberry Pi as a server. It’s pretty rough around the edges at this point — which he freely admits. But we like the concept and figure it might spark an interesting conversation in the comments section.

Now by far our favorite dead drop concept is this USB drive lewdly sticking out of a brick wall. But you actually need to be on-site where this drive is mortared into the wall in order to access it. [Tyler] instead developed a webpage that gives him a text box to enter his messages. These are encrypted using key pairs and pushed to his remote RPi server. This way he can write down his thoughts knowing they’re stored securely and never in danger of being accessed from a lost or stolen cellphone.

If free thought isn’t what you’re trying to transfer from one place to another you probably want something like a Pirate Box.

[Sprite_TM] OHM2013 Talk: Hacking Hard Drive Controller Chips

Even if he hadn’t done any firmware hacking on this hard drive [Sprite_TM’s] digital exploration of the controller is fascinating. He gave a talk at this year’s Observe, Hack, Make (OHM2013) — a non-commercial community run event in the Netherlands and we can’t wait for the video. But all the information on how he hacked into the three-core controller chip is included in his write up.

[Sprite_TM] mentions that you’re not going to find datasheets for the controllers on these drives. He got his foot in the door after finding a JTAG pinout mentioned on a forum post. The image above shows his JTAG hardware which he’s controlling with OpenOCD. This led him to discover that there are three cores inside the controller, each used for a different purpose. The difference between [Sprite_TM’s] work and that of mere mortals is that he has a knack for drawing surprisingly accurate conclusions from meager clues. To see what we mean check out the memory map for the second core which he posted on page 3 of his article.

Using JTAG he was able to inject a jump into the code (along with a filler word to keep the checksum valid) and run his own code. To begin the firmware hacking portion of the project he pulled the flash ROM off of the board and installed it on that little board sticking out on the left. This made it easy for him to backup and reflash the chip. Eventually this let him pull off the same proof of concept as a firmware-only hack (no JTAG necessary). He goes onto detail how an attacker who has root access could flash hacked firmware which compromises data without any indication to they system admin or user. But we also like his suggestion that you should try this out on your broken hard drives to see if you can reuse the controllers for embedded projects. That idea is a ton a fun!

When we were poking around the OHM2013 website (linked above) we noticed that the tickets are sold out; good for them! But if you were still able to buy them they take Bitcoin as one payment option. Are there any other conferences that allow Bitcoin for registration?

Blackhat: IOS Device Charger Exploit Installs And Activates Malware

ios-charger-malware

A team of researchers from Georgia Tech unveiled their findings yesterday at the Blackhat conference. Their topic is a power charger exploit that installs malware on iOS devices. Who would have thought that there’d be a security hole associated with the charging port on a device? Oh wait, after seeing hotel room locks exploited through their power jack this is an avenue that should be examined with all device security.

The demonstration used a charger and an BeagleBoard. Plugging in the charger is not enough to trigger the exploit, the user must unlock the screen while charging for it to go into action. But once that’s done the game is over. Their demo removes the Facebook app and replaces it with an infected impostor while leaving the icon in the same place on your home screen. They notified Apple of their findings and a patch will roll out with iOS7. So when would you plug your device into an untrusted charger? Their research includes a photo from an airport where an iPad is connected to the USB port of a public charging station.

The summary on the Blackhat site has download icons for the white paper and presentation slides. At the time of writing we had a hard time getting them to download but succeeded after several tries.