This Week In Security: Zeroconf Strikes Again, Lastpass Leaks Your Last Password, And All Your Data Is Belong To Us

VoIP cameras, DVRs, and other devices running the Web Services Dynamic Discovery (WSDD) protocol are being used in a new type of DDoS attack. This isn’t the first time a zeroconf service has been hijacked as part of a DDoS, as UPnP has also been abused in similar ways.

Feel like alphabet soup yet? A Denial of Service attack is one where the target is simply made unavailable, rather than actually compromised. The classic example of this is the SYN flood, where an attacker would open hundreds of connections to a web server at once, exhausting the server’s resources and interrupting legitimate use of that server. As mitigations for these attacks were developed (SYN Cookies, for example), DoS attacks were replaced by Distributed Denial of Service (DDOS) attacks. Rather than attack a weakness on the target machine, like available RAM or CPU cycles, a DDoS generally targets available network bandwidth by hitting the target website from many, many locations at once. No clever software tricks can help when your Internet connection is fully saturated with junk traffic. Continue reading “This Week In Security: Zeroconf Strikes Again, Lastpass Leaks Your Last Password, And All Your Data Is Belong To Us”

This Week In Security: Mass IPhone Compromise, More VPN Vulns, Telegram Leaking Data, And The Hack Of @Jack

In a very mobile-centric installment, we’re starting with the story of a long-running iPhone exploitation campaign. It’s being reported that this campaign was being run by the Chinese government. Attack attribution is decidedly non-trivial, so let’s be cautious and say that these attacks were probably Chinese operations.

In any case, Google’s Project Zero was the first to notice and disclose the malicious sites and attacks. There were five separate vulnerability chains, targeting iOS versions 10 through 12, with at least one previously unknown 0-day vulnerability in use. The Project Zero write-up is particularly detailed, and really documents the exploits.

The payload as investigated by Project Zero doesn’t permanently install any malware on the device, so if you suspect you could have been compromised, a reboot is sufficient to clear you device.

This attack is novel in how sophisticated it is, while simultaneously being almost entirely non-targeted. The malicious code would run on the device of any iOS user who visited the hosting site. The 0-day vulnerability used in this attack would have a potential value of over a million dollars, and these high value attacks have historically been more targeted against similarly high-value targets. While the websites used in the attack have not been disclosed, the sites themselves were apparently targeted at certain ethnic and religious groups inside China.

Once a device was infected, the payload would upload photos, messages, contacts, and even live GPS information to the command & control infrastructure. It also seems that Android and Windows devices were similarly targeted in the same attack.

Telegram Leaking Phone Numbers

“By default, your number is only visible to people who you’ve added to your address book as contacts.” Telegram, best known for encrypted messages, also allows for anonymous communication. Protesters in Hong Kong are using that feature to organize anonymously, through Telegram’s public group messaging. However, a data leak was recently discovered, exposing the phone numbers of members of these public groups. As you can imagine, protesters very much want to avoid being personally identified. The leak is based on a feature — Telegram wants to automatically connect you to other Telegram users whom you already know.

By default, your number is only visible to people who you’ve added to your address book as contacts.

Telegram is based on telephone numbers. When a new user creates an account, they are prompted to upload their contact list. If one of the uploaded contacts has a number already in the Telegram system, those accounts are automatically connected, causing the telephone numbers to become visible to each other. See the problem? An attacker can load a device with several thousand phone numbers, connect it to the Telegram system, and enter one of the target groups. If there is a collision between the pre-loaded contacts and the members of the group, the number is outed. With sufficient resources, this attack could even be automated, allowing for a very large information gathering campaign.

In this case, it seems such a campaign was carried out, targeting the Hong Kong protesters. One can’t help but think of the first story we covered, and wonder if the contact data from compromised devices was used to partially seed the search pool for this effort.

The Hack of @Jack

You may have seen that Twitter’s CEO, Jack [@Jack] Dorsey’s Twitter account was hacked, and a series of unsavory tweets were sent from that account. This seems to be a continuing campaign by [chucklingSquad], who have also targeted other high profile accounts. How did they manage to bypass two factor authentication and a strong password? Cloudhopper. Acquired by Twitter in 2010, Cloudhopper is the service that automatically posts a user’s SMS messages to Twitter.

Rather than a username and password, or security token, the user is secured only by their cell phone number. Enter the port-out and SIM-swap scams. These are two similar techniques that can be used to steal a phone number. The port-out scam takes advantage of the legal requirement for portable phone numbers. In the port-out scam, the attacker claims to be switching to a new carrier. A SIM-swap scam is convincing a carrier he or she is switching to a new phone and new SIM card. It’s not clear which technique was used, but I suspect a port-out scam, as Dorsey hadn’t gotten his cell number back after several days, while a SIM swap scam can be resolved much more quickly.

Google’s Bug Bounty Expanded

In more positive news, Google has announced the expansion of their bounty programs. In effect, Google is now funding bug bounties for the most popular apps on the Play store, in addition to Google’s own code. This seems like a ripe opportunity for aspiring researchers, so go pick an app with over 100 million downloads, and dive in.

An odd coincidence, that 100 million number is approximately how many downloads CamScanner had when it was pulled from the Play store for malicious behavior. This seems to have been caused by a third party advertisement library.

Updates

Last week we talked about Devcore and their VPN Appliance research work. Since then, they have released part 3 of their report. Pulse Secure doesn’t have nearly as easily exploited vulnerabilities, but the Devcore team did find a pre-authentication vulnerability that allowed reading arbitraty data off the device filesystem. As a victory lap, they compromised one of Twitter’s vulnerable devices, reported it to Twitter’s bug bounty program, and took home the highest tier reward for their trouble.

High Voltage Protects Low Denominations

How do you keep people out of your change jar? If you didn’t say with a 3D printed iris mechanism and high-voltage spark gap, then clearly you aren’t [Vije Miller]. Which is probably for the best, as we’re not sure we actually want to live in a world where there are two of these things.

Regular Hackaday readers will know that [Vije] has a way of using electromechanical trickery to inject a bit of excitement, and occasionally a little danger, into even the most mundane aspects of life. His latest project is an automated change jar that uses a pinpad to authenticate users, while everyone else gets the business end of a spark gap if the PIR sensor detects them getting to close.

You can see a demonstration of the jar in the video after the break, where he shows the jar’s ability to stop…himself, from getting access to it. Hey, nobody said it was meant to keep out real intruders. Though we do think a similar gadget could be a fun way to keep the kids out of the cookie jar before dinner, though we’d strongly suggest deleting the high-voltage component from the project before deploying it with a gullet full of Keebler’s best.

[Vije] was able to adapt a printable iris design he found on Thingiverse to fit over the mouth of the jar, and uses servos in the base to rotate the whole assembly around and open it up. The internal Arduino Nano handles reading from the pinpad, controlling the stepper, and of course firing up the spark generator for 1000 milliseconds each time the PIR sensor detects somebody trying to be cute. Just the sound of the arc should be enough to get somebody to reconsider the value of literal pocket change.

Some of the design elements used in this change jar’s high voltage components were influenced by the lessons learned when [Vije] was building his plasma-powered toilet air freshener. There’s a sentence we bet you never expected to read today.

Continue reading “High Voltage Protects Low Denominations”

ESP8266 And ESP32 WiFi Hacked!

[Matheus Garbelini] just came out with three (3!) different WiFi attacks on the popular ESP32/8266 family of chips. He notified Espressif first (thanks!) and they’ve patched around most of the vulnerabilities already, but if you’re running software on any of these chips that’s in a critical environment, you’d better push up new firmware pretty quick.

The first flaw is the simplest, and only effects ESP8266s. While connecting to an access point, the access point sends the ESP8266 an “AKM suite count” field that contains the number of authentication methods that are available for the connection. Because the ESP doesn’t do bounds-checking on this value, a malicious fake access point can send a large number here, probably overflowing a buffer, but definitely crashing the ESP. If you can send an ESP8266 a bogus beacon frame or probe response, you can crash it.

What’s most fun about the beacon frame crasher is that it can be implemented on an ESP8266 as well. Crash-ception! This takes advantage of the ESP’s packet injection mode, which we’ve covered before.

The second and third vulnerabilities exploit bugs in the way the ESP libraries handle the extensible authentication protocol (EAP) which is mostly used in enterprise and higher-security environments. One hack makes the ESP32 or ESP8266 on the EAP-enabled network crash, but the other hack allows for a complete hijacking of the encrypted session.

These EAP hacks are more troubling, and not just because session hijacking is more dangerous than a crash-DOS scenario. The ESP32 codebase has already been patched against them, but the older ESP8266 SDK has not yet. So as of now, if you’re running an ESP8266 on EAP, you’re vulnerable. We have no idea how many ESP8266 devices are out there in EAP networks,  but we’d really like to see Espressif patch up this hole anyway.

[Matheus] points out the irony that if you’re using WPA2, you’re actually safer than if you’re unpatched and using the nominally more secure EAP. He also wrote us that if you’re stuck with a bunch of ESP8266s in an EAP environment, you should at least encrypt and sign your data to prevent eavesdropping and/or replay attacks.

Again, because [Matheus] informed Espressif first, most of the bugs are already fixed. It’s even percolated downstream into the Arduino-for-ESP, where it’s just been worked into the latest release a few hours ago. Time for an update. But those crusty old NodeMCU builds that we’ve got running everything in our house?  Time for a full recompile.

We’ve always wondered when we’d see the first ESP8266 attacks in the wild, and that day has finally come. Thanks, [Matheus]!

This Week In Security: VPN Gateways, Attacks In The Wild, VLC, And An IP Address Caper

We’ll start with more Black Hat/DEFCON news. [Meh Chang] and [Orange Tsai] from Devcore took a look at Fortinet and Pulse Secure devices, and found multiple vulnerabilities. (PDF Slides) They are publishing summaries for that research, and the summary of the Fortinet research is now available.

It’s… not great. There are multiple pre-authentication vulnerabilities, as well as what appears to be an intentional backdoor.

CVE-2018-13379 abuses an snprintf call made when requesting a different language for the device login page. Snprintf is an alternative to sprintf, but intended to prevent buffer overflows by including the maximum string length to write to the target buffer, which sounds like a good idea but can lead to malicious truncation.

The code in question looks like snprintf(s, 0x40, "/migadmin/lang/%s.json", lang);.
When loading the login page, a request is made for a language file, and the file is sent to the user. At first look, it seems that this would indeed limit the file returned to a .json file from the specified folder. Unfortunately, there is no further input validation on the request, so a language of ../../arbitrary is considered perfectly legitimate, escaping the intended folder.  This would leak arbitrary json files, but sincesnprintf doesn’t fail if it exceeds the specified length, sending a request for a lang that’s long enough results in the “.json” extension not being appended to the request either.

A metasploit module has been written to test for this vulnerability, and it requests a lang of /../../../..//////////dev/cmdb/sslvpn_websession. That’s just long enough to force the json extension to fall off the end of the string, and it is Unix convention is to ignore the extra slashes in a path. Just like that, the Fortigate is serving up any file on its filesystem just for asking nice.

More worrying than the snprintf bug is the magic value that appears to be an intentional backdoor. A simple 14 character string sent as an http query string bypasses authentication and allows changing any user’s password — without any authentication. This story is still young, it’s possible this was intended to have a benign purpose. If it’s an honest mistake, it’s a sign of incompetence. If it’s an intentional backdoor, it’s time to retire any and all Fortinet equipment you have.

Pulse Secure VPNs have a similar pre-auth arbitrary file read vulnerability. Once the full report is released, we’ll cover that as well.

Exploitation in the Wild

But wait, there’s more. Hide your kids, hide your wife. Webmin, Pulse Secure, and Fortigate are already being exploited actively in the wild, according to ZDNet. Based on reports from Bad Packets, the Webmin backdoor was being targeted in scans within a day of announcement, and exploited within three days of the announcement. There is already a botnet spreading via this backdoor. It’s estimated that there are around 29,000 vulnerable Internet-facing servers.

Both Pulse Secure and Fortinet’s Fortigate VPN appliances are also being actively targeted. Even though the vulnerabilities were reported first to the vendors, and patched well in advance of the public disclosure, thousands of vulnerable devices remain. Apparently routers and other network appliance hardware are fire-and-forget solutions, and often go without important security updates.

VLC is Actually Vulnerable This Time

The VLC media player has released a new update, fixing 11 CVEs. These CVEs are all cases of mishandling malformed media files, and are only exploitable by opening a malicious file with VLC. Be sure to go update VLC if you have it installed. Even though no arbitrary code execution has been demonstrated for any of these issues, it’s likely that it will eventually happen.

Gray Market IP Addresses

With the exhaustion of IPv4 addresses, many have begun using alternative methods to acquire address space, including the criminal element. Krebs on Security details his investigation into one such story: Residential Networking Solutions LLC (Resnet). It all started with an uptick in fraudulent transactions originating from Resnet residential IP addresses. Was this a real company, actually providing internet connectivity, or a criminal enterprise?

Airport Runways And Hashtags — How To Become A Social Engineer

Of the $11.7 million companies lose to cyber attacks each year, an estimated 90% begin with a phone call or a chat with support, showing that the human factor is clearly an important facet of security and that security training is seriously lacking in most companies. Between open-source intelligence (OSINT) — the data the leaks out to public sources just waiting to be collected — and social engineering — manipulating people into telling you what you want to know — there’s much about information security that nothing to do with a strong login credentials or VPNs.

There’s great training available if you know where to look. The first time I heard about WISP (Women in Security and Privacy) was last June on Twitter when they announced their first-ever DEFCON Scholarship. As one of 57 lucky participants, I had the chance to attend my first DEFCON and Black Hat, and learn about their organization.

Apart from awarding scholarships to security conferences, WISP also runs regional workshops in lockpicking, security research, cryptography, and other security-related topics. They recently hosted an OSINT and Social Engineering talk in San Francisco, where Rachel Tobac (three-time DEFCON Social Engineering CTF winner and WISP Board Member) spoke about Robert Cialdini’s principles of persuasion and their relevance in social engineering.

Cialdini is a psychologist known for his writings on how persuasion works — one of the core skills of social engineering. It is important to note that while Cialdini’s principles are being applied in the context of social engineering, they are also useful for other means of persuasion, such as bartering for a better price at an open market or convincing a child to finish their vegetables. It is recommended that they are used for legal purposes and that they result in positive consequences for targets. Let’s work through the major points from Tobac’s talk and see if we can learn a little bit about this craft.

Continue reading “Airport Runways And Hashtags — How To Become A Social Engineer”

This Week In Security: KNOB, Old Scams Are New Again, 0-days, Backdoors, And More

Bluetooth is a great protocol. You can listen to music, transfer files, get on the internet, and more. A side effect of those many uses is that the specification is complicated and intended to cover many use cases. A team of researchers took a look at the Bluetooth specification, and discovered a problem they call the KNOB attack, Key Negotiation Of Bluetooth.

This is actually one of the simpler vulnerabilities to understand. Randomly generated keys are only as good as the entropy that goes into the key generation. The Bluetooth specification allows negotiating how many bytes of entropy is used in generating the shared session key. By necessity, this negotiation happens before the communication is encrypted. The real weakness here is that the specification lists a minimum entropy of 1 byte. This means 256 possible initial states, far within the realm of brute-forcing in real time.

The attack, then, is to essentially man-in-the-middle the beginning of a Bluetooth connection, and force that entropy length to a single byte. That’s essentially it. From there, a bit of brute forcing results in the Bluetooth session key, giving the attacker complete access to the encrypted stream.

One last note, this isn’t an implementation vulnerability, it’s a specification vulnerability. If your device properly implements the Bluetooth protocol, it’s vulnerable.

CenturyLink Unlinked

You may not be familiar with CenturyLink, but it maintains one of the backbone fiber networks serving telephone and internet connectivity. On December 2018, CenturyLink had a large outage affecting its fiber network, most notable disrupting 911 services for many across the United States for 37 hours. The incident report was released on Monday, and it’s… interesting.
Continue reading “This Week In Security: KNOB, Old Scams Are New Again, 0-days, Backdoors, And More”