Supercon 2023: Ben Combee And The Hacker’s Guide To Audio/Video Formats

Media formats have come a long way since the early days of computing. Once upon a time, the very idea of even playing live audio was considered a lofty goal, with home computers instead making do with simple synthesizer chips instead. Eventually, though, real audio became possible, and in turn, video as well.

But what of the formats in which we store this media? Today, there are so many—from MP3s to MP4s, old-school AVIs to modern *.h264s. Senior software engineer Ben Combee came down to the 2023 Hackaday Supercon to give us all a run down of modern audio and video formats, and how they’re best employed these days.

Continue reading “Supercon 2023: Ben Combee And The Hacker’s Guide To Audio/Video Formats”

Reinforcing Plastic Polymers With Cellulose And Other Natural Fibers

While plastics are very useful on their own, they can be much stronger when reinforced and mixed with a range of fibers. Not surprisingly, this includes the thermoplastic polymers which are commonly used with FDM 3D printing, such as polylactic acid (PLA) and polyamide (PA, also known as nylon). Although the most well-known fibers used for this purpose are probably glass fiber (GF) and carbon fiber (CF), these come with a range of issues, including their high abrasiveness when printing and potential carcinogenic properties in the case of carbon fiber.

So what other reinforcing fiber options are there? As it turns out, cellulose is one of these, along with basalt. The former has received a lot of attention currently, as the addition of cellulose and similar elements to thermopolymers such as PLA can create so-called biocomposites that create plastics without the brittleness of PLA, while also being made fully out of plant-based materials.

Regardless of the chosen composite, the goal is to enhance the properties of the base polymer matrix with the reinforcement material. Is cellulose the best material here?

Continue reading “Reinforcing Plastic Polymers With Cellulose And Other Natural Fibers”

Hackaday Links Column Banner

Hackaday Links: September 8, 2024

OK, sit down, everyone — we don’t want you falling over and hurting yourself when you learn the news that actually yes, your phone has been listening to your conversations all along. Shocking, we know, but that certainly seems to be what an outfit called Cox Media Group (CMG) does with its “Active Listening” software, according to a leaked slide deck that was used to pitch potential investors. The gist is that the software uses a smartphone’s microphone to listen to conversations and pick out keywords that it feeds to its partners, namely Google, Facebook, and Amazon so that they can target you with directed advertisements. Ever have an IRL conversation about something totally random only to start seeing references to that subject pop up where they never did before? We sure have, and while “relationship mining” seemed like a more parsimonious explanation back in 2017, the state of tech makes eavesdropping far more plausible today. Then there’s the whole thing of basically being caught red-handed. The Big Three all huffed and puffed about how they were shocked, SHOCKED to learn that this was going on, with reactions ranging from outright denial of ever partnering with CMG to quietly severing their relationship with the company. So much for years of gaslighting on this.

Continue reading “Hackaday Links: September 8, 2024”

Fun And Failure

My sister is a beekeeper, or maybe a meta-beekeper. She ends up making more money by breeding and selling new queen bees to other beekeepers than she does by selling honey, but that doesn’t mean that she doesn’t also process the sweet stuff from time to time. She got a free steam-heated oscillating hot knife, used for cutting the waxy caps off of the tops of the cells before spinning the combs down to extract honey, and she thought it might be easier to use than her trusty hand-held electric hot knife.

The oscillating knife, which was built something like a century ago, hadn’t been used in decades. All of the grease had turned to glue, and the large v-belt wheel that made it go was hard to turn by hand, and the motor was missing anyway. So she gave it to my father and me as a project. How could we resist?

We found the original manual on the Internet, which said that it would run from any 1/2 hp motor, or could be optionally driven by a takeoff wheel from a tractor – unfortunately not an option in my sister’s honey house. But we did find a 3/4 hp bench grinder at Harbor Freight that conveniently fit inside the case, and bought the smallest v-belt pulley wheel that would fit the grinder’s arbor. We thought we were geniuses, but when we hooked it all up, it just stalled.

We spent more than a few hours taking the mechanism apart. It was basically an eccentric shaft with a bearing on the end, and the bearing ran back and forth in the groove of a sliding mechanism that the knife blade attached to. As mentioned above, everything was gunked, so we took it all apart. The bearing was seized, so we freed that up by getting the sand out of the balls. The bearing couldn’t move freely in the slide either, but we filed that down until it just moved freely without noticeable play. We added grease from this century, and reassembled it. It turned fine by hand.

But with the belt and motor attached, the mechanism still had just enough friction to stall out the motor. Of course we wrapped some rope around the shaft and pull-started it, and it made a hell of a racket, nearly vibrated itself off the table, and we could see that the marvelous zinc-coated frame that held it all together was racking under the tension. It would require a wholly new housing to be viable, and we hadn’t even figured out a source of steam to heat the knife.

In short, it was more trouble than it was worth. So we packed up the bench grinder in the original container, and returned it no-worse-for-wear to the Freight. But frankly, we had a fantastic time playing around with a noble machine from a long-gone past. We got it “working” even if that state was unworkable, and we were only out the cost of the small v-belt pulley. Who says all of your projects have to be a success to be fun?

Hackaday Podcast Episode 287: Raspberry Pi Woes, Blacker Than Black, And Printing With Klipper

Elliot Williams is back from vacation, and he and Al Williams got together to talk about the best Hackaday posts from the last week. Of course, the Raspberry Pi RP2350 problem generated a bit of discussion.

On a lighter note, they saw laser lawn care, rooting WiFi devices, and some very black material made from wood. Need more current-sinking capability from a 555? They talked about that, too, along with a keyboard you use with your feet.

The guys had a lot to say about Klipper, why you might want to move your 3D printer to it, and the FCC’s stance on ham radio antennas in restricted neighborhoods. Oh, and don’t forget to play “What’s that Sound?”

DRM? Who’s got time for that? Download our legally unencumbered MP3.

Continue reading “Hackaday Podcast Episode 287: Raspberry Pi Woes, Blacker Than Black, And Printing With Klipper”

This Week In Security: EUCLEAK, Revival Hijack, And More

[Thomas Roche] of NinjaLab is out with EUCLEAK, (pdf) a physical attack against Infineon security microcontrollers, and the security tokens that contain them. The name is a portmanteau of Euclidean and leak. And no surprise, it’s a data leak in some implementations of the Extended Euclidean Algorithm (EEA), a component of an Elliptical Curve Digital Signature Algorithm (ECDSA).

OK, time to step back. Infineon microcontrollers are the digital smart parts inside popular security tokens like the Yubikey 5, some Java smart cards, and even the Infineon TPMs. These devices all serve a similar purpose. They store one or more secret keys, and are guaranteed to never disclose those keys. Instead, they use their secret keys to do cryptographic functions, like ECDSA signatures, and output the result. There’s even a special set of tests, the Common Criteria, that are intended to backstop these guarantees. What’s interesting is that an otherwise excellent product like the Yubikey 5, that passes all these auditing and certification processes, is still vulnerable.

The actual attack is to perform ECDSA signatures while monitoring the physical chip with an electromagnetic probe. This tiny directional antenna can pick up on EM noise generated by the microprocessor. That EM noise leaks timing information about the internal state of the cryptography, and the secret key can be derived as a result.

This process does require physical access to the token for several minutes. To get useful readings, the plastic case around the security token does need to be disassembled to get the probe close enough to pick up signals. From there it’s at least an hour of post-processing to actually get the key. And most of these security tokens intentionally make the disassembly process rather difficult. The point isn’t that it’s impossible to open up, but that it’s impossible not to notice that your token has been tampered with. Continue reading “This Week In Security: EUCLEAK, Revival Hijack, And More”

If Wood Isn’t The Biomass Answer, What Is?

As we slowly wean ourselves away from our centuries-long love affair with fossil fuels in an attempt to reduce CO2 emissions and combat global warming, there has been a rapid expansion across a broad range of clean energy technologies. Whether it’s a set of solar panels on your roof, a wind farm stretching across the horizon, or even a nuclear plant, it’s clear that we’ll be seeing more green power installations springing up.

One of the green power options is biomass, the burning of waste plant matter as a fuel to generate power. It releases CO2 into the atmosphere, but its carbon neutral green credentials come from that CO2 being re-absorbed by new plants being grown. It’s an attractive idea in infrastructure terms, because existing coal-fired plants can be converted to the new fuel. Where this is being written in the UK we have a particularly large plant doing this, when I toured Drax power station as a spotty young engineering student in the early 1990s it was our largest coal plant; now it runs on imported wood pellets.

Continue reading “If Wood Isn’t The Biomass Answer, What Is?”