The Wow! Signal Revisited: Citizen Science Informs SETI Effort

As far as interesting problems go, few can really compete with the perennial question: “Are we alone?” The need to know if there are other forms of intelligent life out there in the galaxy is deeply rooted, and knowing for sure either way would have massive implications.

But it’s a big galaxy, and knowing where to look for signals that might mean we’re not alone is a tough task. Devoting limited and expensive resources to randomly listen to chunks of the sky in the hopes of hearing something that’s obviously made by a technical civilization is unlikely to bear fruit. Much better would be to have something to base sensible observations on — some kind of target that has a better chance of paying off.

Luckily, a chance observation nearly 50 years ago has provided just that. The so-called Wow! Signal, much discussed but only occasionally and somewhat informally studied, has provided a guidepost in the sky, thanks in part to a citizen scientist with a passion for finding exoplanets.

Continue reading “The Wow! Signal Revisited: Citizen Science Informs SETI Effort”

3D Printed Newtonian Telescope Has Stunning Looks, Hadley Breaks The Bank

Have you ever considered building your own telescope? Such a project can be daunting, especially if you grind your own mirrors. But with a 3D printer, hardware store bits and bobs, and some inexpensive pre-made mirrors, you too can be the proud owner of your very own own Hadley — a 114/900mm Newtonian Telescope that can cost less than $150 USD to build! Check out the video below the break to get a good scope on the project.

Astrophotography is possible with the Hadley

The creator’s stated goal is to “make an attractive alternative to the shoddy, hard to use “hobby-killer” scopes in the $100-200 range“, and we have to say that it appears to have met its goal admirably. The optics — the most complex part of any build — can be easily purchased online, and the rest of the parts are available at your local hardware store.

While the original build was provided in Imperial measures, a metric version is now available. Various contributors have created a rich ecosystem of accessories and alternative versions of various parts, all in the interest of making the telescope more useful. Things like tripod mounts, phone mounts (for use with your favorite star chart app) and more are only a click away. The only real question to answer is “What color filament will I use?”

Of course, sometimes light waves can get a bit long in the tooth, and for those cases you’ll want a radio telescope, which can also be DIY’d thanks to the availability of satellite dishes and SDR dongles!

Continue reading “3D Printed Newtonian Telescope Has Stunning Looks, Hadley Breaks The Bank”

Watch NASA Crash A Probe Into An Asteroid Tonight

Got any plans for tonight? No? Well then you’re in luck, because NASA is just a few hours from intentionally smashing a probe into the minor planet Dimorphos as part of Double Asteroid Redirection Test (DART) — marking the first time humanity has ever intentionally tried to knock a space rock off-course. If it works, we’re one step closer to having a viable planetary defense system in case we ever detect an asteroid on a collision course with Earth. If it doesn’t work. . . well, we’ve still got time to come up with another plan.

To be clear, the 170 meter (560 feet) wide Dimorphos DOES NOT pose any threat to us, nor will it after NASA smacks it around with an ion-propelled spacecraft. This is simply a test to see if a small spacecraft impacting an asteroid head-on can slow it down enough to appreciably change its orbital trajectory. We won’t know for a week or so if the impact did the trick, but it should still be fascinating to watch the crash happen live.

We’ve embedded the two NASA streams below. The first one will start about a half an hour before impact and is going to show live navigational images of Dimorphos as the DART spacecraft zeros in on its target, and the second stream will cover the main event. Keep in mind this isn’t a Hollywood film we’re talking about — don’t expect any dramatic explosions when the clock hits zero. When the telemetry stops coming back, that means it was a bullseye.

Continue reading “Watch NASA Crash A Probe Into An Asteroid Tonight”

CAPSTONE: The Story So Far

After decades of delays and false starts, NASA is finally returning to the Moon. The world is eagerly awaiting the launch of Artemis I, the first demonstration flight of both the Space Launch System and Orion Multi-Purpose Crew Vehicle, which combined will send humans out of low Earth orbit for the first time since 1972. But it’s delayed.

While the first official Artemis mission is naturally getting all the attention, the space agency plans to do more than put a new set of boots on the surface — their long-term goals include the “Lunar Gateway” space station that will be the rallying point for the sustained exploration of our nearest celestial neighbor.

But before launching humanity’s first deep-space station, NASA wants to make sure that the unique near-rectilinear halo orbit (NRHO) it will operate in is as stable as computer modeling has predicted. Enter the Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment, or CAPSTONE.

CAPSTONE in the clean room prior to launch.

Launched aboard an Electron rocket in June, the large CubeSat will hopefully become the first spacecraft to ever enter into a NRHO. By positioning itself in such a way that the gravity from Earth and the Moon influence it equally, maintaining its orbit should require only periodic position corrections. This would not only lower the maintenance burden of adjusting the Lunar Gateway’s orbit, but reduce the station’s propellant requirement.

CAPSTONE is also set to test out an experimental navigation system that uses the Lunar Reconnaissance Orbiter (LRO) as a reference point instead of ground-based stations. In a future where spacecraft are regularly buzzing around the Moon, it will be important to establish a navigation system that doesn’t rely on Earthly input to operate.

So despite costing a relatively meager $30 million and only being about as large as a microwave oven, CAPSTONE is a very important mission for NASA’s grand lunar aspirations. Unfortunately, things haven’t gone quite to plan so far. Trouble started just days after liftoff, and as of this writing, the outcome of the mission is still very much in jeopardy.

Continue reading “CAPSTONE: The Story So Far”

Solar Flare Quiets A Quarter Of The Globe

In the “old” days, people were used to the idea that radio communication isn’t always perfect. AM radio had cracks and pops and if you had to make a call with a radiophone, you expected it to be unreliable and maybe even impossible at a given time. Modern technology,  satellites, and a host of other things have changed and now radio is usually super reliable and high-fidelity. Usually. However, a magnitude 7.9 solar flare this week reminded radio users in Africa and the Middle East that radio isn’t always going to get through. At least for about an hour.

It happened at around 10 AM GMT when that part of the world was facing the sun. Apparently, a coronal mass ejection accompanied the flare, so more electromagnetic disruption may be on its way.

The culprit seems to be an unusually active sunspot which is expected to die down soon. Interestingly, there is also a coronal hole in the sun where the solar wind blows at a higher than usual rate. Want to keep abreast of the solar weather? There’s a website for that.

We’ve pointed out before that we are ill-prepared for technology blackouts due to solar activity, even on the power grid. The last time it happened, we didn’t rely so much on radio.

Continue reading “Solar Flare Quiets A Quarter Of The Globe”

Blue Origin Loses Rocket, Gains Abort System Test

Even if you’re just making a brief hop over the Kármán line to gain a few minutes of weightlessness, getting to space is hard. Just in case any of their engineers were getting complacent, Blue Origin just got a big reminder of that fact this afternoon with the destruction of their New Shepard 3 (NS3) rocket during a suborbital research flight.

But while the rocket itself was lost, the New Shepard’s automated abort systems were able to push the capsule H. G. Wells away from the fireball, saving the dozens of scientific experiments which had been loaded onto the un-crewed vehicle. While there’s been no public word yet on the condition of these experiments, it’s reasonable to assume that at least some portion of them can be re-flown in the future — a fact that will likely come as a great relief to the researchers who designed them. It will be interesting to see who picks up the tab for the do-over flight; while launch insurance is a must-have for billion dollar satellites, it seems unlikely these small suborbital experiments would have been covered under a similar policy.

A spurt of flame can be seen in the otherwise invisible exhaust moments before engine failure.

We’re also still in the dark about what caused the in-flight breakup of NS3, other than the fact that the engine was clearly sputtering in the seconds before it blew apart. This could be a sign that the engine’s nominal fuel-to-oxidizer ratio was faltering, or perhaps even indicative of foreign debris becoming dislodged and burning in the combustion chamber. But really, without official word from Blue Origin, it’s impossible to say what happened.

This is especially true when you consider that we’re talking about a vehicle that’s pushing the envelope to begin with. Remember, the New Shepard is a reusable booster, and NS3 is specifically a veteran of eight flights — with all but one of them taking the booster above the 100 kilometer altitude, which is generally accepted to be the boundary of space.

For those worried that celebrities and assorted millionaires will no longer have access to space, fear not. Blue Origin’s crewed flights have flown exclusively on the newer NS4 and its associated capsule First Step. This does however mean that Blue Origin no longer has a spare booster on which to fly commercial payloads, potentially putting into jeopardy any semblance of scientific value the program may have had.

Continue reading “Blue Origin Loses Rocket, Gains Abort System Test”

Unpacking The Stowaway Science Aboard Artemis I

NASA’s upcoming Artemis I mission represents a critical milestone on the space agency’s path towards establishing a sustainable human presence on the Moon. It will mark not only the first flight of the massive Space Launch System (SLS) and its Interim Cryogenic Propulsion Stage (ICPS), but will also test the ability of the 25 ton Orion Multi-Purpose Crew Vehicle (MPCV) to operate in lunar orbit. While there won’t be any crew aboard this flight, it will serve as a dress rehearsal for the Artemis II mission — which will see humans travel beyond low Earth orbit for the first time since the Apollo program ended in 1972.

As the SLS was designed to lift a fully loaded and crewed Orion capsule, the towering rocket and the ISPS are being considerably underutilized for this test flight. With so much excess payload capacity available, Artemis I is in the unique position of being able to carry a number of secondary payloads into cislunar space without making any changes to the overall mission or flight trajectory.

NASA has selected ten CubeSats to hitch a ride into space aboard Artemis I, which will test out new technologies and conduct deep space research. These secondary payloads are officially deemed “High Risk, High Reward”, with their success far from guaranteed. But should they complete their individual missions, they may well help shape the future of lunar exploration.

With Artemis I potentially just days away from liftoff, let’s take a look at a few of these secondary payloads and how they’ll be deployed without endangering the primary mission of getting Orion to the Moon.

Continue reading “Unpacking The Stowaway Science Aboard Artemis I”