Hackaday Prize 2022: A Backup Battery Pack

These days, we’re all running around toting smartphones and laptops that could always use a bit more charge. Portable battery packs have become popular, and [Anuradha] has designed one that packs plenty of juice to keep everything humming.

The pack is designed to be charged via solar panels, at 18 V and up to 5 A of current. It’s intended to work with a Maximum Power Point Tracking module to ensure the maximum energy is gained from the sunshine available. For storage, the pack relies on 75 individual 18650 lithium cells, arranged with 3 cells in series, each with 25 in parallel (3s25p). They’re spot welded together for strength and good conductivity. Nominally, the output voltage is on the order of 10-12 V. The included battery management system (BMS) will allow an output current up to 100 A, and the pack can be used with an AC inverter to power regular home appliances.

Overall, it’s a tidy pack that’s more than capable of keeping a few devices charged up for days at a time. If you’re building something similar yourself, though, just be sure to package it well and keep it protected. So many lithium batteries can quickly turn fiery if something goes wrong, so store and use it appropriately! Fear not, however – we’ve got a guide on how to do just that.

Hackaday Prize 2022: Drying Clothes With Ultrasound

Clothes dryers are great, and a key part of modern life, but they do use a lot of energy. [Mike Rigsby] decided to see if there was a more efficient method of drying clothes that could compete with resistive heating for efficiency. Thus, he started work on an ultrasonic clothes dryer.

In early testing, he found ultrasonic transducers could indeed blast droplets of moisture away from fabric, effectively drying it. However, unlike heat, the ultrasonic field doesn’t effectively permeate through a pile of clothes, nor can it readily be used with a spinning drum to dry many garments at once.

[Mike]’s current experiments are centered around using a basket-type system, with a bed of ultrasonic transducers at the bottom. The idea is that the basket will shake back and forth, agitating the load of clothing and allowing the different garments to effectively contact the transducers. It’s still a work in progress, but it’s an interesting approach to the problem. We’d love to see a comparison of the energy use of a full-scale build versus a regular dryer.

We’ve heard of the ultrasonic drying concept before, too, with the Department of Energy researching the matter. It could just be that we’ll all be using ultrasonic dryers in decades to come!

Hackaday Prize 2022: Treadmill Becomes Human-Powered Generator

Running on a treadmill is a great way to workout, but what if the effort you put in could be put to use? This treadmill generator from [Amitabh Shrivastava] does just that.

The build starts with a regular old treadmill, which has a motor inside typically used to power the tread. Instead, the motor’s control electronics were removed, and it was repurposed to work as a generator. The output from the treadmill’s DC motor was fed directly to a DC-DC converter. This was then fed to an inverter that generates 120 V AC, which can power appliances that use up to 20-25W based on [tinkrmind’s] running performance.

It’s a fun way to generate power during a workout. If you don’t want your treadmill’s monitor to die in the middle of a Friends rerun, you’ll have to dig deep on those long runs. We’ve seen similar builds before too, with exercise bikes being a popular method of generating electricity. In fact, that’s [Amitabh]’s next project! Video after the break.

Continue reading “Hackaday Prize 2022: Treadmill Becomes Human-Powered Generator”

Hackaday Prize 2022: A Cooler For Your Footwear

Sweaty feet can be uncomfortable, and the smell generated in one’s shoes isn’t much to admire, either. In an effort to help solve this issue, [Revoxdyna] has created a cooler for one’s feet that should help out in hot conditions.

Modern shoes, particularly sneakers, are often ventilated, but it’s not always enough. This build takes things further, using active cooling. Water is pumped through tubes and into a copper insole which cools the sole of the foot. It’s achieved thanks to a pump assembly that mounts to the rear of the shoe in a 3D printed housing. The water itself is chilled with a thermoelectric cooler, which helps remove heat from the shoe area.

There is some bulk to the design, which would prevent its use in performance applications in its current form. However, we could imagine companies like Nike leaping at the chance to build some very fancy, high-tech shoes along these lines in future. After all, they already managed to create power laces, and this is even cooler again! Pun definitely intended.

Hackaday Prize 2022: A Spring-Driven Digital Movie Camera

These days, most of us are carrying capable smartphones with high-quality cameras. It makes shooting video so easy as to take all the fun out of it. [AIRPOCKET] decided to bring that back, by converting an old spring-driven 8mm film camera to shoot digital video.

The camera in question is a magazine-fed Bell & Howell Model 172 from the 1950s. In its original spring-driven form, it could shoot for approximately 35 seconds at a (jerky) frame rate 16 fps.

In this build, though, the film is replaced with a digital imaging system designed to fit in the same space as the original magazine. A Raspberry Pi Zero 2 was pressed into service, along with a rechargeable battery and Pi camera module. The camera is timed to synchronise with the shutter mechanism via a photosensor.

Since it uses the original optics and shutter speed, the resulting video is actually very reminiscent of the Super 8 cameras of the past. It’s an impressive way to get a retro film effect straight into a digital output format. The alternative is to just shoot on film and scan it afterwards, of course! Video after the break.

Continue reading “Hackaday Prize 2022: A Spring-Driven Digital Movie Camera”

Hackaday Prize 2022: A Sun-Chasing Robot

There’s plenty of power to be had from the sun, but you need to be out of the shade to receive it. [Dennis] built a robot by the name of Sun Chaser that has the smarts to go where the sun is shining.

Sun Chaser is essentially a robotic solar panel, tasked with filling up its batteries as much as possible. It can then be used as a power supply for campsites or other remote areas, and used to charge devices as required.

A Raspberry Pi runs the show, paired with a Squid motor controller to run the drive system. Sun Chaser has a motorized solar panel onboard which can track the sun for maximum output, with the aid of six photoresistors to guide the positioning. A camera is used to image the area around Sun Chaser, too, and processing is used to identify sunny regions which will provide the most energy.

Even outside of its useful applications, the idea of having a robot that can run around and keep itself juiced up is a fun one. Solar power gives a robot a greater sense of autonomy, after all. This author has experimented in this field to great enjoyment, too. Video after the break.

Continue reading “Hackaday Prize 2022: A Sun-Chasing Robot”

Hackaday Prize 2022: Compact Solar Tracking System Doesn’t Break The Bank

If you need to squeeze every available watt out of a solar panel, you’ll probably want to look into a solar tracking system. Unfortunately, they are usually quite large, heavy, and expensive. As an alternative, [JP Gleyzes] has put together a DIY solar tracking system that aims to address these issues.

Starting with a 100 W flexible solar panel purchased during a Black Friday sale, [JP] first created a simple frame using 20 mm PVC tubing and a few 3D printed brackets. It mounts on a wooden base with a printed worm gear rotation mechanism, powered by a stepper motor. The tilt is a handled by a lead screw made from a threaded rod, connected between the wooden base and the top of the solar panel, and is also driven by a stepper motor.

For even more efficiency, [JP] also created an MPPT charge controller with companion app using an ESP32, modified 20 A buck converter, and current sensor module. The ESP32 also controls the stepper motors. The optimum angle for the solar panel determined using the date, time, and the system’s GPS position. [JP] had also created a simple Android app to calibrate the panels’ start position.

This project is a finalist in the Planet-Friendly Power challenge of the 2022 Hackaday Prize, and all the details to build your own are available on your project page. Looking at the size of the system, we suspect future iterations could be even smaller.

Continue reading “Hackaday Prize 2022: Compact Solar Tracking System Doesn’t Break The Bank”