Hackaday Prize 2022: Drying Clothes With Ultrasound

Clothes dryers are great, and a key part of modern life, but they do use a lot of energy. [Mike Rigsby] decided to see if there was a more efficient method of drying clothes that could compete with resistive heating for efficiency. Thus, he started work on an ultrasonic clothes dryer.

In early testing, he found ultrasonic transducers could indeed blast droplets of moisture away from fabric, effectively drying it. However, unlike heat, the ultrasonic field doesn’t effectively permeate through a pile of clothes, nor can it readily be used with a spinning drum to dry many garments at once.

[Mike]’s current experiments are centered around using a basket-type system, with a bed of ultrasonic transducers at the bottom. The idea is that the basket will shake back and forth, agitating the load of clothing and allowing the different garments to effectively contact the transducers. It’s still a work in progress, but it’s an interesting approach to the problem. We’d love to see a comparison of the energy use of a full-scale build versus a regular dryer.

We’ve heard of the ultrasonic drying concept before, too, with the Department of Energy researching the matter. It could just be that we’ll all be using ultrasonic dryers in decades to come!

Most FDM Printers Are Also Filament Dryers (with A Little Help)

If you’ve printed with an FDM printer, you probably know there are many interrelated factors to getting a good print. One key item is the dryness of the filament. When you first crack your plastic open, it should be dry. Most filament is packed in a sealed bag with desiccant in it. But if you have the filament out for a while, it soaks up moisture from the air and that causes lots of problems. [Design Prototype Test] has built and bought filament dryers before, but now he would like to point out that every FDM printer with a heated bed can act as a filament dryer. You can see the details in the video below.

It turns out that the idea isn’t original, but it doesn’t seem to be one that has caught on. What the video shows though, is to take the idea and run with it. A 3D printed support sits on the bed and accepts a cheap PC fan. The whole affair gets boxed up with cardboard and can dry the filament.

Continue reading “Most FDM Printers Are Also Filament Dryers (with A Little Help)”

Upcycled Dryer Motor Makes Budget Disk Sander

At the most basic level, most shop tools are just a motor with the right attachments. But the details are often far from simple. [DuctTapeMechanic] took a junker clothes dryer, yanked the electric motor from it, and converted it into a disk sander. The price was right at about $10. You can see it all after the break.

As you might imagine, having the motor is only half the battle. You also need a way to mount the thing securely and a way to affix the sanding disk. While this doesn’t pose the same challenges as, say, a drill press, it does take some thought. The motor in the donor dryer didn’t have threads on the shaft, so a bolt and some welding time took care of that. We suspect that’s tricky because you need the shaft and the bolt to be concentric and level.

Once you have a threaded shaft, the rest of the build is anti-climatic. A little carpentry and a little electrical. We would probably cover up the electrical connections a bit more. It seems like you’d want to know which way the motor spins so you could use a reverse thread, if necessary. From the video, we think the motor he has was spinning the right way, but we don’t know if that’s always true.

There’s something satisfying about building your own tools. If you work on smaller things, we’ve seen a miniature sander that might be handy to have around. If you want to go the other way, try finding an old floor polisher instead of a dryer.

Continue reading “Upcycled Dryer Motor Makes Budget Disk Sander”

The Mystery Of The Clacking Clanking Scraping Sound

Hackers tend to face household problems a little differently than ordinary folk. Where the average person sees a painful repair bill or a replacement appliance, the hacker sees a difficult troubleshooting job and the opportunity to save some cash. [trochilidae] was woken one day by the dreaded Clacking Clanking Scraping Sound, or CCSS, and knew that something had to be done.

[trochilidae] reports that usually, the CCSS is due to the child of the house destroying his lodgings, but in this case, the source was laundry based. The Miele tumble dryer was acting up, and in need of some attention. What follows is a troubleshooting process [AvE] would be proud of – careful disassembly to investigate the source of the problem. Initial efforts found a loose bulb that was unrelated, before landing on a mysterious spring that wouldn’t fit back into place. In the end, that’s because it had no right to be there at all – an underwire had escaped from a bra, before becoming entangled in the dryer’s bearing. With the culprit identified and removed, it was a simple reassembly job with some attention also paid to the condenser and filters to keep things in ship-shape.

It just goes to show – a bad noise, if properly investigated in a prompt manner, doesn’t have to be the end of the world. A bit of investigation goes a long way, and can save you a lot of money and heartache.

We’ve seen appliances giving hackers trouble before – like this aging washing machine that got its mechanical brain replaced with an Arduino.

Internet Of Laundry — Let The ESP8266 Watch Your Dirty Drawers Get Clean

When you think of world-changing devices, you usually don’t think of the washing machine. However, making laundry manageable changed not only how we dress but how much time people spent getting their clothes clean. So complaining about how laborious our laundry is today would make someone from the 1800s laugh. Still, we all hate the laundry and [Andrew Dupont], in particular, hates having to check on the machine to see if it is done. So he made Laundry Spy.

How do you sense when the machine — either a washer or a dryer — is done? [Andrew] thought about sensing current but didn’t want to mess with house current. His machines don’t have LED indicators, so using a light sensor wasn’t going to work either. However, an accelerometer can detect vibrations in the machine and most washers and dryers vibrate plenty while they are running.

The four-part build log shows how he took an ESP8266 and made it sense when the washer and dryer were done so it could text his cell phone. He’d already done a similar project with an Adafruit HUZZAH. But he wanted to build in some new ideas and currently likes working with NodeMCU. While he was at it he upgraded the motion sensor to an LIS3DH which was cheaper than the original sensor.

[Andrew] already runs Node – RED on a Raspberry Pi, so incorporating this project with his system was a snap. Of course, you could adapt the approach to lots of other things, as well. The device produces MQTT messages and Node – RED subscribes to them. The Pushover handles the text messaging. Node – RED has a graphical workflow that makes integrating all the pieces very intuitive. Here’s the high-level workflow:

You might wonder why he didn’t just have the ESP8266 talk directly to Pushover. That is possible, of course, but in part 2, [Andrew] enumerates some good reasons for his design. He wants to decouple components in the system for easier future upgrades. And MQTT is simple to publish on the sensor side of things compared to API calls which are handled by the Raspberry Pi for now.

Laundry monitoring isn’t a unique idea and everyone has a slightly different take on it, even some Hackaday authors. If phone notification is too subtle for you, you can always go bigger.

A Cool Mist That Dries Your Clothes

This one is both wild enough to be confused as a conspiracy theory and common sense enough to be the big solution staring us in the face which nobody realized. Until now. Oak Ridge National Laboratory and General Electric (GE), working on a grant from the US Department of Energy (DOE), have been playing around with new clothes dryer technology since 2014 and have come with something new and exciting. Clothes dryers that use ultrasonic traducers to remove moisture from garments instead of using heat.

If you’ve ever seen a cool mist humidifier you’ll know how this works. A piezo element generates ultrasonic waves that atomize water and humidify the air. This is exactly the same except the water is stored in clothing, rather than a reservoir. Once it’s atomized it can be removed with traditional air movement.

This is a totally obvious application of the simple and inexpensive technology — when the garment is laying flat on a bed of transducers. This can be implemented in a press drying system where a garment is laid flat on a bed or transducers and another bed hinges down from above. Poof, your shirt is dry in a few seconds.

But individual households don’t have these kinds of dryers. They have what are called drum dryers that spin the clothes. Reading closely, this piece of the puzzle is still to come:

They play [sic] to scale-up the technoloogy to press drying and eventually a clothes dryer drum in the next five months.

We look at this as having a similar technological hurdle as wireless electricity. There must be an inverse-square law on the effect of the ultrasonic waves to atomize water as the water moves further away from the transducers. It that’s the case, tranducers on the circumference of a drum would be inefficient at drying the clothing toward the center. This slide deck hints that that problem is being addressed. It talks about only running the transducers when the fabric is physically coupled with the elements. It’s an interesting application and we hope that it could work in conjunction with traditional drying methods to boost energy savings, even if this doesn’t pan out as a total replacement.

With a vast population, cost adds up fast. There are roughly 125 M households in the United States and the overwhelming majority of them use clothes dryers (while many other parts of the world have a higher percentage who hang-dry their clothing). The DOE estimates $9 billion a year is spent on drying clothes in the US. Reducing that number by even 1/10th of 1% will pay off more than tenfold the $880,000 research budget that went into this. Of course, you have to outfit those households with new equipment which will take at least 8-12 years through natural attrition, even if ultrasonics hit the market as soon as possible.

Continue reading “A Cool Mist That Dries Your Clothes”

How To Keep An Unruly Dryer In Line

If necessity is the mother of invention, then inconvenience is its frustrating co-conspirator. Faced with a finicky dryer that would shut down mid-cycle with a barely audible beep if its load was uneven (leaving a soggy mass of laundry), [the0ry] decided to add the dryer to the Internet of Things so it could send them an email whenever it shut itself down.

After opening a thinger.io account, adding the soon-to-be device, and setting up the email notification process, [the0ry] combined the ESP8266 Development Board, a photosensitive resistor, and a 5V power supply on a mini breadboard. All that was left was to mount it on the dryer and direct the LDR (light-dependent resistor) to the machine’s door lock LED to trigger an email when it turned off — indicating the cycle had finished or terminated prematurely. A little tape ensured the LDR would only be tripped by the desired light source.

If you’re an apartment-dweller have WiFi in the wash area it would be awesome to see a battery-powered version you take with you. But in general this is a great hardware blueprint as many device have status LEDs that can be monitored in a similar way. If you want to keep the server in-house (literally in this case) check out the Minimal MQTT series [Elliot Williams] recently finished up. It uses a Raspberry Pi as the center server and an ESP8266 is one of the limitless examples of hardware that plays nicely with the protocol.

We love seeing hacks like this because not only does it conserve water and energy by reducing instances of rewashing, but it’s also a clever way to extend the life of an appliance and potentially save hundreds of dollars in replacing it. Add this to the bevvy of hacks that add convenience to one’s home — some of which produce delicious results.