Sealed-System Bucket Loader Cleans Messes In Dangerous Places

[youtube=https://www.youtube.com/watch?v=XjHJ71SVop4&w=580]

 

Cleaning up after a disaster is hard and dangerous. But the ROEBL project is trying to make it substantially safer by removing the human operator from harm’s way. The Remote Operated Electric Bucket Loader had a big double-fenced, cement barrier play area set up at Maker Faire and [Justin Gray] walked us through the project which concluded with a demonstration of the hardware.

For now the operator does need to be on site to see what the loader is doing, but a first-person video setup is planned for the future. Still, removing the operator from the jarring experience of riding inside is an improvement. And the sealed nature of the electric and hydraulic systems mean that it can operate in areas inundated with liquids like water or oil.

The video above has a 90 second demonstration at the end (while we all laugh like children at what really was a giddy display of power being thrown about by a handheld controller). The ROEBL website has a gallery where you can see the conversion process that started with a standard diesel machine.

Electrolytic Rust Removal Leaves Your Parts Shiny As New

If you’re tired of removing rust by hand, you’d be surprised how easy it is to build your very own electrolytic rust removal system!

[James Taylor] is in the process of restoring a very old lathe. Most parts were small enough to simply remove the rust, paint, and grease via chemical stripping and bead blasting, but he ran into a problem with the 40kg lathe bed. It’s painted and if he chemically strips it, he needs to rinse it — which might result in even more flash rusting.

He looked up electrolytic rust removal, and was a bit suspicious of how simple and effective it claimed to be, but he decided to give it a shot anyway. He picked up a big 160L rain barrel, 6 pieces of rebar, some copper wire, and a computer power supply.

Continue reading “Electrolytic Rust Removal Leaves Your Parts Shiny As New”

A Modular 1GHz Spectrum Analyzer

an

[MrCircuitMatt] has been doing a lot of radio repair recently, quickly realized having a spectrum analyzer would be a useful thing to have. Why buy one when you can build one, he thought, and he quickly began brushing up on his RF and planning out the design of a 1000 MHz spectrum analyzer

The project is based on Scotty’s Spectrum Analyzer, a sweep-mode, modular 1GHz spectrum analyzer that is, unfortunately, designed entirely in ExpressPCB. [Matt] didn’t like this proprietary design software tied to a single board house. The basic building blocks of [Scotty]’s spectrum analyzer were transferred over to KiCAD, the boards sent off to a normal, Chinese board house.

In the second video, [Matt] goes over the design of the control board, a small module that connects the spectrum analyzer to the parallel port of a PC. There’s a lot of well thought out design in this small board, a good thing, too, since he’s powering his VCO with a switched mode supply. The control board has a 32-bit I/O, so how’s he doing that with a parallel port, what is ultimately an 8-bit port? A quartet of 74ACT573, a quad buffer with latch enable. Using the eight data lines on the parallel port allows him to toggle some pins while the ancient pins on the parallel bus – Strobe, Select Printer, and Line Feed control the latches on each of the buffers. This gives him the ability to write to 32 different pins in his spectrum analyzer with a parallel port.

Right now, [Matt] is wrapping up the construction of his control board, with the rest of the modules following shortly. He thinks the completed analyzer might even be cheaper than a professional, commercial offering, and we can’t wait to see another update video.

Continue reading “A Modular 1GHz Spectrum Analyzer”

Not Your Average Power Supply Hack

Not Your Typical ATX Power Supply Hack

Power supplies are essential for at home tinkering and electronics hacking. Unfortunately, they’re really quite expensive, and a bit out of reach for most hobbyists. Computer ATX power supplies are a cheap alternative, although they usually tend to lack the features of real bench power supplies… unless you hack yours like [Mark Schoonover]!

When [Mark] set out on this project he wanted to use as many recycled components as possible, but still come up with an extremely functional bench top power supply. He snagged a 500W ATX power supply from one of his kid’s old desktop PC’s, grabbed some old wall-warts for individual current limited supplies (apparently ATX PSU’s don’t have 5V rails anymore?), and put it all into a nice big project box.

He’s even thrown in a voltage regulator with current metering and a nice set of 7-segment displays!

Continue reading “Not Your Typical ATX Power Supply Hack”

Augmented Laser Cutter Removes Design Technology Barriers

augmented laser

Laser cutters, 3D printers, CNC routers — they’re all great technology in the right hands, but unfortunately the learning curve sometimes puts would-be makers at a distance.  [Anirudh] from MIT’s Media Lab is attempting to break down at least one of those barriers with his augmented laser cutter system called, Clearcut.

The system consists of a webcam, a projector, and a semi transparent work space on top of the laser cutter. By placing objects on the surface, the webcam can identify them, duplicate them with the projector, and then laser engrave them. In addition to the “copy and paste” idea of this, you can also use infrared emitting pens to physically draw your design on the work surface to be engraved. It starts to bridge the gap between complex CAD and pencil and paper, something anyone is capable of.

Continue reading “Augmented Laser Cutter Removes Design Technology Barriers”

GPIB To USB, With A Python API

If you’re not so daft as to think Arduino-based oscilloscopes and multimeters are actually useful for all but the simplest tests and measurements, you just might have some big iron sitting around your workbench from the likes of HP, or Tektronix. You might have noticed a strange port on the back of these machines, labeled GPIB or IEEE-488. This is the standard interface for these devices, and if you’ve ever priced out a USB to IEEE-488 converter, you can see why [Steven] thought it would be cheaper to build his own.

This build is an update to an earlier version we saw a few years ago. Since then, [Steven] has taken some advice from the community and replaced a bunch of resistors with proper GPIB line driver ICs, and generally cleaned up the firmware.

Because a USB to GPIB adapter is only one small part of the tools necessary to connect these old measurement devices to a modern computer, [Steven] has also been working on InstrumentKit. It’s a Python library that takes all the standardized instrument commands and wraps them up in an easy to use API. You can check out the docs for InstrumentKit here, or just look through the board files and firmware on the Github

Wind Tunnel Testing Now Available To The Common Man

DIY Wind Tunnel

If you are in the market for a DIY wind tunnel the folks over at sciencebuddies.org have got you covered. They have done a great job documenting how they built their own wind tunnel. Most of the structure is made of plywood with the test chamber is made of plexi-glass so that the operator can visually observe what is happening during a test. A common gable-mount fan provides the air flow, you may have one installed in your attic to keep it cool. The only non-widely available components are the force sensors that feed data to a computer for logging.

Continue reading “Wind Tunnel Testing Now Available To The Common Man”