Button Cell Connectors For Breadboarding

We’re working on a project that has a battery backup, but we don’t have any more coin cell holders on hand. No problem, we remember seeing a double pin header used for this. But when we tried to shove the CR2032 battery in between the pins it was a no-go. We could swear we’d featured a project that does this but couldn’t find it here at Hackaday. After much searching we came up with the Guerrilla battery holder which is seen on the left. No wonder it wasn’t working, the CR1212 in that picture is a much smaller package. So we figured we’d have to come up with something else, until inspiration struck.

There must be some other way to configure the pin header to work with a fatter cell body. On the right you can see that a diagonal orientation works like a charm. Join us after the break for a couple of close-ups of that connector and our thoughts on using this with a variety of different cells.

Continue reading “Button Cell Connectors For Breadboarding”

Drill-based Kinect Camera

[Brett Graham] and [David Cox] are taking the Kinect out into the world thanks to this handheld hack they call the Drill of Depth. Apparently, the Kinect wants 12V at 1A which is quite easy to provide with a rechargeable power tool like this Ryobi drill. The setup features a 4.3″ touchscreen display, connected to the Gumstix Overo Air that is running Linux. They claim that there’s a “legitimate scientific reason” for building the device but they’re not sharing it yet.

So what would you use this for? We wonder if it would be possible to roll a GPS into the mix, then use post processing from the captured data to recreate the environment in a virtual setting? Imagine if a weekend spent walking around campus and processing the results let you model your University and make it an add-on level for your favorite game. Or perhaps this could be paired with a regular camera to generate high-quality 3D skinning data for Google Earth. That’s what we came up with, what do you think?

Quiet Dust Extractor From Scavenged Materials

As with many of the projects covered on hackaday, [bongodrummer]’s Dust Sniper came about because of a lack of effective commercial solutions, in this case to the problem of quiet dust extraction.

Workshops are generally full of dust and noise, both of which take their toll on the human body. This is why safety regulations exist for noisy and dusty workplaces and–as [bongodrummer] rightly points out–we have to take precautions in our own home and community workshops. Hearing protectors, dust masks and safety goggles are integral, but reducing the amount of dust and noise in the fist place is paramount.

Using mostly scavenged materials [bongodrummer] did a quality job building the Dust Sniper–and all for a bill of materials totaling £20. It has an integrated work surface, automatic switches on 2 vacuum lines to sync up with power tools, a cyclonic air filter that prevents clogging the HEPA filter and reducing suction power, inlet and outlet soundproofing, and a plain old power outlet for good measure.

Whether or not you’re interested in building an integrated workbench/extractor system like this one, we recommend you check out the details of the cyclone filter and the sound reducing components. Not only are they an interesting read, but they could be useful to apply in other projects, for example a soldering station with fume hood.

We think it would be really neat to include more cyclones in our projects. Stick around after the break to see [bongodrummer]’s prototype cyclone filter in action.

Continue reading “Quiet Dust Extractor From Scavenged Materials”

Versaloon Can Program Hardware From Several Manufacturers

Versaloon is an open source, USB connected project, that centers around an STM32 processor and provides a standard JTAG pinout. Above you see the Nano version which has a 10-pin JTAG connector, but there is also a 20-pin option on the Handy model. Great, another JTAG programmer. Well this can do a bit more than that. With a bit of help from the software it has been turned into a programmer for ten different types of hardware. Obviously this should be able to program anything that works with the JTAG protocol, but the script adapts it to work as an In System (or In Circuit) Programmer too. So far the list of programming targets includes STM32, LPC1000, LPC900, STM8, AR8, MSP430, and a few others.

We had some trouble finding an actual picture of this hardware. If you’ve got one, snap a picture and leave a link to it in the comments along with your thoughts on the device.

[Thanks Geekabit]

Reading A Digital Caliper With A Microcontroller

[Maris] wanted a way to read measurements from a digital caliper electronically. He ended up using the TI Launchpad to accomplish this, but not all of the necessary hardware is seen above. The calipers cost him about $7 on eBay, and they have four interface pins which made this hack quite a bit easier. After a bit of probing he established their purpose; voltage, ground, clock and data. A bit of scoping proved that data was being sent in 24-bit burst in packets that are quite easy to decode.

From there it’s just a matter of interfacing with a microcontroller. The chip he’s using is an MSP430G2231 that runs at 3.3V, but the caliper’s logic high is only 1.5v. By constructing an adapter using a pair of transistors, the data and clock from the calipers are able to pull pins on the MSP430 low. This is collected and analyzed by [Maris’] firmware and can be read on a PC using a terminal program.

[Thanks Chris]

Make Your Own Minimalist AVR ISP

Giving a programmer is a great way to get people started in microcontrollers so If you want a cheap simple AVR programmer this might just be what you’re looking for. It combines the V-USB firmware, USBtiny software, a few resistors, and some zener diodes. An interesting trick using this programmer is if your trying to program another 8 pin ATtiny you can use some tape to isolate the USB data pins and then piggyback the target ATtiny on the programmer.

Unfortunately in order to flash the ATtiny for your programmer you need a working programmer so it’s somewhat of a catch-22.  Make sure your careful when setting the fuse bits because it will use the reset pin making it hard to reprogram without additional programming hardware. AVRs in general are a great way to start using microcontrollers so if your interested give out tutorials a go. You’ll find some tips to get started in addition to information about using an Arduino, or a DAPA cable to flash the firmware to this chip.

DIY Clamp Helps With Surface Mount Soldering

Hackaday writer [Gerrit Coetzee] built a simple clamp to aid in surface mount component soldering. This cheap, easily made device uses gravity to hold tiny components in place. The tip of the bolt is pointed, but gently like a ballpoint pen so as not to harm the components with a sharp tip. Roughly position your component, rest the tip of the clamp on its center, then nudge for final positioning. [Gerrit] also points out that this acts as a heat sink, helping to prevent damage to the component if you’re too lethargic with the soldering iron.

It seems like this device has been around in one form or another for quite a long time. But the best ideas do keep on popping up. Another nice tip to go along with this one is the use of a dowel when ironing during toner transfer for your PCBs.