3D Printed RC Kart Actually Made Entirely By Hand

If we told you somebody built a 3D printed go-kart, you’d expect to see a certain sequence of events. A bit of work in CAD, a printer montage, then some assembly. That’s not the case here. [3D Sanago] is an artist that works with 3D printing pens, creating 3D objects entirely by hand. It’s an impressive skill, all the more so when it’s used to build something functional like this gorgeous little go-kart.

Just filling in the front wing of this build took approximately four hours. Thus, [3D Sanago] used foam boards to cover much of the chassis.
The build recreates the kart from the KartRider Rush+ game. The first step was to purchase a basic RC car frame to serve as the basis for the kart. [3D Sanago] then set about building a kart skeleton over the unpainted body of the basic RC car. It starts with a wireframe and individual flat panels that are eventually fused together into 3D trusses using the 3D pen.

The trusses are then mounted to the RC car chassis underneath with some wood plates serving as a supporting structure. [3D Sanago] has been known to surface his creations by tediously filling in the wireframes with the 3D pen, but not so this time. He took the easy way out of affixing sections of foam board to create the outer skin of the kart. He also demonstrates neat techniques like forming over a pen to create long plastic pipes and other tubular features. His acrylic-and-mousepad wheel and tire package is also pretty neat.

It’s as much craft as anything else, but it’s amazing to see what can be done when a human takes on the role of a 3D printer.  We’ve featured other great builds from [3D Sanago] before, like this awesome Pokemon-themed humidifier.

Continue reading “3D Printed RC Kart Actually Made Entirely By Hand”

Hotshot 3D Printed Hovercraft Is Devastatingly Fast

These days, it’s pretty cheap and easy to build your own little RC hovercraft. [ValRC] demonstrates just that with a hovercraft build that is surprisingly nimble, and fast to boot.

The build started with a design [ValRC] found online. It was simple enough to print and assemble, needing only a pair of a brushless motors, a speed controller, a receiver, and a servo to run the show. The design uses a plastic bag as a skirt, assembled around a 3D printed frame. That proved to be the hardest part of the build, as hot glue didn’t want to play nice with the thin garbage bag.

Even despite the challenges, once assembled, the hovercraft performed well. It readily slid around on a cushion of air, drifting across asphalt with abandon. Upgrades included a better rudder and a skirt made of thicker and more resilient plastic.  The final craft looked mesmerizing as it glided over the smooth concrete of a parking garage with ease.

A hovercraft is, honestly, one of the cooler printable projects for beginners. All you need is a simple design, some powerful motors, and you’re good to go.

Continue reading “Hotshot 3D Printed Hovercraft Is Devastatingly Fast”

A Hydroelectric Dam, Built Out Of LEGO

Hydroelectric dams are usually major infrastructure projects that costs tens of millions of dollars to construct. But they don’t have to be — you can build your own at home, using LEGO, as [Build it with Bricks] demonstrates!

The build is set up in an aquarium with a pump, which serves to simulate flow through a river system. The LEGO dam is installed in the middle of the aquarium, blocking the flow. It has a sluice gate in the lower section to feed water to a turbine for power generation. The gate is moved via a rack and pinion. It’s driven by a LEGO motor on a long shaft to keep it a safe distance from the wet stuff. The dam also gets a spillway to allow for overflow to be handled elegantly. Meanwhile, a second motor acts as a generator, fitted with a fairly basic turbine.

Hilariously, the first build fails spectacularly as the hydrostatic pressure of the water destroys the LEGO wall. A wider base and some reinforcements help solve the problem. There’s a better turbine, too.  It’s all pretty leaky, but LEGO was never designed to be water tight. As you might imagine, it doesn’t generate a lot of power, but it’s enough to just barely light some LEDs.

It’s a fun way to learn about hydroelectric power, even if it’s not making major amounts of electricity. Video after the break.

Continue reading “A Hydroelectric Dam, Built Out Of LEGO”

The NSA’s Furby Artificial Intelligence Scare: FOIA Documents Provide Insight

For those of us who were paying a modicum of attention to the part of the news around 1999 which did not involve the imminent demise of humanity due to the Y2K issue, a certain toy called a ‘Furby’ was making the headlines. In addition to driving parents batty, it also gave everyone’s favorite US three-letter agency a scare, with it being accused of being both a spying tool and equipped with an advanced artificial intelligence chip. Courtesy of a recent Freedom of Information Act (FOIA) request we now have the low-down on what had the NSA all atwitter.

In a Twitter thread (Nitter) user [dakotathekat] announced the release, which finally answered many questions about the NSA’s on-premises ban of Furbys (or Furbees if you’re Swedish). The impression one gets is that this ‘Furby ban’ was primarily instated out of an abundance of caution, as unauthorized recording devices of any kind are strictly forbidden on NSA premises. With nobody at the NSA apparently interested in doing a teardown of a Furby to ascertain its internals, and the careful balance between allowing children’s toys on NSA grounds versus the risk of a ‘Furbygate’, a ban seemed the easy way out. Similarly, the FAA saw fit to also make people turn their Furbys off like all other electronic devices.

The original Furby toys did not have anything more complex inside of them than a 6502-derived MCU and a Ti TSP50C04 IC for speech synthesis duties, with the supposed ‘learning’ process using a hardcoded vocabulary that gradually replaced its default gibberish with English or another target language.

Massive Water Rocket Is Impressive But Accessible

Water rockets are one of those projects that never get old, and bumping the size just adds to the challenge. In the video after the break, [ARRO Rockets] takes us through the launch of Gamma IV, his most ambitious water rocket project yet. Crafted with spliced soda bottles and standard household materials, this rocket is a testament to what one can achieve with simple components and a bit of ingenuity.

The rocket’s release mechanism demonstrates this — employing nothing more than a quick connect hose connection and a basic pulley system. The parachute recovery system is also a nice combo of modern electronics and simplicity. It uses a microcontroller with accelerometer to detect the apogee, and release the parachute to be ejected by another piece of soda bottle acting as a spring. It also records or the flight data on an SD card.

[ARRO Rockets] had some trouble with friction on the launch rail, which was partially solved with liberal application of silicone spray. The root cause might be the rail button flexing on launch, or just the change of the pressurized bottles.

We are especially impressed by how accessible this project is, a reminder that high-flying achievements don’t necessarily require deep pockets or hard-to-source parts. The entire setup is not only cost-effective but also opens up numerous possibilities for further experimentation and refinement, like adding a second stage or a precision release mechanism.

Continue reading “Massive Water Rocket Is Impressive But Accessible”

Is This The World’s Smallest N-Scale Train Layout?

There’s just something about miniature worlds — they’re just so relaxing to look at and ponder. Think you don’t have ample room for a model train layout at your place? You may not be thinking small enough. [Peter Waldraff] knows a thing or two about hiding train layouts inside of furniture (that’s one solution), but this time, he’s built a track in plain sight that’s meant to sit on the bookshelf. The whole thing is just 5.5″ x 12″.

This N-scale layout was three years in the making, mostly because [Peter] was waiting for just the right little powered chassis to come along. For the layout, [Peter] started by creating custom flexible track by removing pieces with a sharp knife. He glued down the track to pink foam and used nails to hold it in place while the glue dried. He also built a wood frame around the base to stabilize it and hold some of the electronic components, including a switch made from an old ballpoint pen.

Then it was time to start decorating the thing, beginning with a couple of buildings made from more pink foam that are both lit up with LEDs. Eventually, [Peter] added a bunch of details like streetlights, animals, and garbage cans that really make the layout pop. As far as the engine goes, [Peter] picked up a Tomytec TM-TR02 on eBay and built a trolley out of two broken cars. [Peter]’s build is something you just have to see for yourself — fortunately for you, the build and demo video is after the break.

Like we said, [Peter]’s usual territory is hiding train layouts in end tables and coffee tables and the like, so it’s nice to see what he can do given different constraints.

Continue reading “Is This The World’s Smallest N-Scale Train Layout?”

Computer Logic Spins With No Electricity

We’ve often said you can make a logic gate out of darn near anything. [The Action Lab] agrees and just released a video showing how he made some logic gates from chains and gears. Along the way, he makes the case that the moving chain is an analog for electric current. The demonstration uses a commercial toy known as Spintronics, but if you are mechanically handy, you could probably devise your own setup using 3D printing or gears.

A spring wound motor is a “battery.” Gears act like resistors and junctions to distribute “current” in multiple directions. Seeing series and parallel resistance as moving chains is pretty entertaining and might help someone new learn those concepts.

Continue reading “Computer Logic Spins With No Electricity”