Screaming Fast RC Hovercraft

Of all the homemade RC Hovercraft floating around out there, this build is not only one of the better looking: it’s also unexpectedly quick. [ScratchBuiltAircraft] sourced foam board from the local dollar store to construct the hovercraft’s body and a heavy-duty garbage bag with a hole cut in the center for the skirt. Air reaches the skirt area from the hovercraft’s EDF (Electric Duct Fan — the big one on the back) which pumps the air through a rectangular hole in the base.

A servo mounted behind the fan controls the rudders, while the rest of the electronics and the battery are cleanly tucked away beneath foam body pieces. We’re not sure what kind of top speed the Turnigy motor provides, but it’s probably impressive assuming it can keep from flipping over. Watch it blast off with a bit too much lift in the video below.

For something a bit slower, there’s always the solar powered hovercraft from earlier this summer.

Continue reading “Screaming Fast RC Hovercraft”

Obstacle Avoiding LEGO Rover Uses CDs For Wheels

lego-rover

This rover built by [Sath02] is a great example that you don’t have to be a mechanical engineering wizard to get into robotics. He used LEGO pieces to help ease the difficulty of getting a rover up and running.

In this case the use of LEGO is strictly structural. The electronics are not the NXT parts you would expect to see when working with these popular toy blocks. Instead he’s put the Arduino Palm Plus into service. It’s an Arduino board that has rows of holes at either end to make it LEGO compatible. It also carries an LM293D motor controller and [Sath02] added an XBee module for wireless control.

At the top of the assembly is an IR distance sensor which is used for obstacle avoidance. You may not be interested in building and exact replica, but the techniques he uses for attaching the distance sensor, CD wheels,  and fabricating the rest of the rover are good examples if you take on a LEGO build in the future.

Continue reading “Obstacle Avoiding LEGO Rover Uses CDs For Wheels”

24-hour Hackathon Produces Respectable Accelerometer Labyrinth

hackathon-labyrinth

We’re not sure if this was some type of corporate team building, but if it was sign us up for the next one. [Filipp], [Saluka], and [Michael] participated in a recent 24-hour hackathon hosted by Microsoft. They whipped up this labyrinth game controlled by a Nexus 4 Android phone.

This thing looks so well crafted we’re shocked that it’s a 24-hour build. Just putting together the walls of a maze that size takes some time. They then mounted it in a gimbaled frame which tilts the using servos. Check out the demo video below to get a look at the underpinnings. There are several elastic bands connecting the base to the maze. These act as shock absorbers to help keep the movement smooth and to prevent any oscillations from the frame flexing. For us this is an important design element that we’ll keep in mind (just in case we need to win another competition by designing a labyrinth).

An Arduino controls the servos, using Bluetooth to communicate with the phone. The team mentions some filtering used to help make the user experience more natural but we didn’t see many details on this aspect of the hack.

Continue reading “24-hour Hackathon Produces Respectable Accelerometer Labyrinth”

Milled Water Bottle Rocket Launcher Pushes Plastic Containers To Their Limit

water-bottle-rocket-launcher

Building this launcher is simple if you already have a mill. It does a remarkable job of pressurizing and launching soda bottles which are partially filled with water. The main component of this is a triple-gasket stopper with a quick release.

The problem with a lot of these water bottle rocket projects is that they leak where the bottle meets the launcher. In most cases this is a good thing as it’s almost impossible to build up enough pressure to cause the bottle to fail. This system has no such built-in safety mechanism, which is why the test launch below is conducted from a safe distance. After seating the partially filled bottle on the launch platform it’s pressurized to around 100 PSI at which point a yank on the string lets it fly.

Most of the time we look on these as casual projects. But we figure this one is much more suited for a rocket club or hackerspace event.

Continue reading “Milled Water Bottle Rocket Launcher Pushes Plastic Containers To Their Limit”

Hacking McDonald’s Minion Toy To Be An Electric Slidewhistle

mcdonalds_toy_hacking

This is a look at the brain surgery which [Tim] performed on a Happy Meal Toy. The McDonald’s package meal perk comes with one of several different Despicable Me 2 characters. But [Tim] wasn’t a fan of this one since you had to blow in it to make noise. He grabbed a 555 timer and added his own circuit to the toy which turns it up to 11 (seriously, turn your volume down before playing the video).

Disassembly includes removing a screw which needs a 3-sided screwdriver (protip: use a bench grinder and a cheap screw driver to make your own). There’s also some prying to get into the skull and then its time to work on the slide whistle. The blue tube is a regular slide whistle which you blow into from the back and pull on the red goo to change the pitch. [Tim] added a photoresistor to the mouthpiece and an LED on the slide. Moving the light source changes the intensity which is one of the adjustments to make 555 circuit howl.

We love the Happy Meal toy hacks because they seem so visceral. A couple years ago it was parts harvesting from Avatar toys. which in turn inspired a tripwire hack with a Penguin toy.

Continue reading “Hacking McDonald’s Minion Toy To Be An Electric Slidewhistle”

Crazyflie Control With Leap And Kinect

crazieFlie03

The gang at Bitcraze is at it again, this time developing Leap Motion control for their Crazyflie quadcopter, as well as releasing a Kinect-driven autopilot proof of concept. If you haven’t seen the Crazyflie before, you may not realize how compact it is: 90mm motor to motor and only 19 grams.

As far as we can tell, the Crazyflie still needs a PC to control it, so the Leap and Kinect are natural followups. Hand control with the Leap Motion is what you’d expect: just imagine your open palm controlling it like a marionette, with the height of your hand dictating thrust. The Kinect setup looks the most promising. The guys strapped a red ball to the Crazyflie that provides a trackable object against a white backdrop. The Kinect then monitors the quadcopter while a user steers via mouse clicks. Separate PID controllers correct the roll, pitch and thrust to reposition the Crazyflie from its current coordinates to a new setpoint chosen by a click or a drag. Videos of both Leap and Kinect piloting are below.

Tight on cash but still want to take to the skies? We have two rubber-band-powered devices from earlier this week: the Ornithopter and the hilariously brilliant GoPro Slingshot.

Continue reading “Crazyflie Control With Leap And Kinect”

Amazing Flight Of A 3D Printed Rubber Band Powered Ornithopter

We’re actually going to link to an old post from back in February because we think it’s equally as impressive as the most recent work. This is a 3D printed ornithopter powered by a rubber band (translated). The frame is much like a traditional rubber band plane. The difference is that after winding it up it doesn’t spin a propeller. The flapping of the four plastic membrane wings makes it fly like magic. Seriously, check out the demo below… we almost posted this as “Real or Fake?” feature if we hadn’t seen similar offerings a couple of years back.

The flight lasts a relatively long time when considering the quick winding before launch is all that powered it. But the most recent offerings (translated) from the site include the motorized ornithopter design seen above. It carries a small Lithium cell for continuous flight. These designs have a 3D printed gear system which makes them a bit more complicated, but brings steering and remote control to the party. If you want one of your own they’re working on a small run of kits. We figure it’d be a lot more fun to prototype and print your own. Sure, it’s reinventing the wheel. But it’s a really cool wheel!

Continue reading “Amazing Flight Of A 3D Printed Rubber Band Powered Ornithopter”