A suitcase made of two rectangular plastic crates latched together sits prone on a concrete floor. The top shell is a beige-ish grey with a navy check and the word "JerseyMaid" on it updside down. The navy bottom crate is navy with the letters "lsen" in large cursive font ant the letters "ORATION" in smaller print below it. Much of the text is covered by a large latch and a power tool battery mount. Bright pink tape affixes a blue tarp skirt to the bottom of the hover suitcase.

Hovercraft Suitcase Gives Your Luggage A Smooth Ride

The wheels on roller suitcases are one of their primary failure points. After the destruction of the wheel mount on her DIY suitcase, [Laura Kampf] wondered if it would be better to dispense with wheels altogether.

To give her suitcase a lift, [Kampf] decided to turn it into a hovercraft so it couldn’t be stopped by pavement or puddles. The first task was finding an appropriate fan, and a compact leaf blower donated it’s body to makerdom for the project. After reducing the blower to it’s constituent components and finding a secret turbo switch, work began on the momentum curtain.

“Nose-holing” the arrangement and size of the holes to pipe air through the stapled tarp and tape skirt seemed to be the bulk of the trial-and-error in this one. Based on other hovercraft designs [Kampf] found, keeping the holes near the center of the inflated portion gave better lift. In the end, the carry-on is able to lift a decent amount even on its lowest setting, resulting in a suitcase that is “not embarrassing” for travel. No word yet on what TSA thinks.

If you’re looking for another unexpected lift off, how about a full-sized flying Delorean replica? We’ve also covered some of the reasons why we don’t see more of these all terrain wonders.

Continue reading “Hovercraft Suitcase Gives Your Luggage A Smooth Ride”

Solar-Powered RC Boat Has Unlimited Range

For RC aircraft there are generally legal restrictions that require the craft to stay within line of sight of the operator, but an RC boat or car can in theory go as far as the signal will allow — provided there is ample telemetry to let the operator navigate. [Thingify] took this idea to the extreme with a remote-controlled boat that connects to a satellite internet service and adds solar panels for theoretically unlimited range, in more ways than one.

The platform for this boat is a small catamaran, originally outfitted with an electric powertrain running on a battery. Using a satellite internet connection not only allows [Thingify] to receive telemetry and pilot the craft with effectively unlimited range, but it’s a good enough signal to receive live video from one of a pair of cameras as well. At that point, the main limiting factor of the boat was the battery, so he added a pair of flexible panels on a custom aluminum frame paired with a maximum power point tracking charge controller to make sure the battery is topped off. He also configured it to use as much power as the panels bring in, keeping the battery fully charged and ready for nightfall where the boat will only maintain its position and wait for the sun to rise the next morning.

With this setup [Thingify] hopes to eventually circumnavigate Lake Alexandrina in Australia. Although he has a few boat design issues to work out first; on its maiden voyage the boat capsized due to its high center of gravity and sail-like solar panels. Still, it’s an improvement from the earlier version of the craft we saw at the beginning of the year, and we look forward to his next iteration and the successful voyage around this lake.

Continue reading “Solar-Powered RC Boat Has Unlimited Range”

Retrotechtacular: The Ferguson System

Of the many great technological leaps made in the middle of the 20th century, one of the ones with perhaps the greatest impact on our modern life takes a back seat behind the more glamorous worlds of electronics, aeronautics, or computing. But the ancestor of the modern tractor has arguably had more of an impact on the human condition in 2025 than that of the modern computer, and if you’d been down on the farm in the 1940s you might have seen one.

The Ferguson system refers to the three-point implement linkage you’ll find on all modern tractors, the brainchild of the Irish engineer Harry Ferguson. The film below the break is a marketing production for American farmers, and it features the Ford-built American version of the tractor known to Brits and Europeans as the Ferguson TE20.

Ferguson TE20 2006” by [Malcolmxl5]
The evolution of the tractor started as a mechanisation of horse-drawn agriculture, using either horse-drawn implements or ones derived from them. While the basic shape of a modern tractor as a four wheel machine with large driving wheels at the rear evolved during this period, other types of tractor could be found such as rein-operated machines intended to directly replace the horse, or two-wheeled machines with their own ecosystem of attachments.

As the four-wheeled machines grew in size and their implements moved beyond the size of their horse-drawn originals, they started to encounter a new set of problems which the film below demonstrates in detail. In short, a plough simply dragged by a tractor exerts a turning force on the machine, giving the front a tendency to lift and the rear a lack of traction. The farmers of the 1920s and 1930s attempted to counter this by loading their tractors with extra weights, at the expense of encumbering them and compromising their usefulness. Ferguson solved this problem by rigidly attaching the plough to the tractor through his three-point linkage while still allowing for flexibility in its height. The film demonstrates this in great detail, showing the hydraulic control and the feedback provided through a valve connected to the centre linkage spring. Continue reading “Retrotechtacular: The Ferguson System”

A black, rectangular box is shown, with a number of waterproof screw connectors on the front.

A Ruggedized Raspberry Pi For Sailors

Nautical navigation has a long history of innovation, from the compass and chronometer to today’s computer-driven autopilot systems. That said, the poor compatibility of electronics with saltwater has consequently created a need for rugged, waterproof computers, a category to which [Matti Airas] of Hat Labs has contributed with the open-source HALPI2.

Powered by the Raspberry Pi Compute Module 5, the electronics are housed in a heavy duty enclosure made of aluminium, which also serves as a heat sink, and closes with a waterproof seal. It has a wide variety of external connectors, all likewise waterproofed: power, HDMI, NMEA 2000 and NMEA 0183, Ethernet, two USB 3.0 ports, and an external WiFi or Bluetooth antenna. The external ports are plugged into the carrier board by short extension cables, and there are even more ports on the carrier board, including two HDMI connectors, two MIPI connectors, four USB ports, and a full GPIO header. The case has plugs to install additional PG7 or SP13 waterproof connectors, so if the existing external connectors aren’t enough, you can add your own.

Besides physical ruggedness, the design is also resistant to electrical damage. It can run on power in the 10-32 volt range, and is protected by a fuse. A supercapacitor bank preserves operation during a power glitch, and if the outage lasts for more than five seconds, can keep the system powered for 30-60 seconds while the operating system shuts down safely. The HALPI2 can also accept power over NMEA 2000, in which case it has the option to limit current draw to 0.9 amps.

The design was originally created to handle navigation, data logging, and other boating tasks, so it’s been configured for and tested with OpenPlotter. Its potential uses are broader than that, however, and it’s also been tested with Raspberry Pi OS for more general projects. Reading through its website, the most striking thing is how thoroughly this is documented: the site describes everything from the LED status indicators to the screws that close the housing – even a template for drilling mounting holes.

Given the quality of this project, it probably won’t surprise you to hear this isn’t [Matti]’s first piece of nautical electronics, having previously made Sailor HATs for the ESP32 and the Raspberry Pi.

This Rail Speeder Needs A Little Work

If you take the wheels off a FIAT Punto, you might just notice that those rims fit nicely on a rail. [AT Lab] did, and the resulting build makes for a very watchable video.

Some of us have been known to spend a little too much time chasing trains, and there’s little on rails that won’t catch a railfan’s eye. That goes for rail speeders too, home constructed railcarts for exploring abandoned lines, and there are some great builds out there. We like the one in the video below the break, but we can’t help noticing a flaw which might just curtail its career.

It’s a simple enough build, a wooden chassis, a single motor and chain drive to one axle. All the wheel fittings are 3D printed, which might be a case of using the one tool you have to do everything, but seems to work. It rides well on the test track which appears to be an abandoned industrial siding, but it’s in those wheels we can see the problem and we guess that perhaps the builder is not familiar with rails. The Punto wheels have an inner rim and an outer rim, while a true rail wheel only has an inner one. There’s a good reason for this; real railways have points and other trackwork, not to mention recessed rails at road crossings or the like. We love the cart, but we’d cut those inner rims off to avoid painful derailments.

If you’re up for the ultimate railway build, take care not to go near a live line, and make sure you follow this video series.

Continue reading “This Rail Speeder Needs A Little Work”

Making An Ultralight Helicopter

Ultralight aviation provides an excellent pathway for those who want to fly, but don’t want to get licensed. These quite often cheap and cheerful DIY aircraft often hide some excellent engineering underneath. This is no more true than in [ultralight helicopter’s] four-year-long helicopter build saga!

While most ultralight builds are fixed-wing, a rotocraft can meet all the legal definitions of ultralight aviation. This helicopter is an excellent example of what’s possible with a lot of time and patience. The construction is largely aluminium with some stainless steel on the skids. A 64-horsepower Rotax 582UL engine powers the two-bladed main rotor and tail rotor. The drivetrain features a multi-belt engine coupler and three gearboxes to ensure correct power output to the two rotors.

Continue reading “Making An Ultralight Helicopter”

Making The World’s Smallest E-Bike Battery

Often times, e-bikes seek to build the biggest battery with the most range. But what if you want to take a couple lunch loops on your bike and only need 20 minutes of charge? That’s [Seth] from Berm Peak set out to find out with his minuscule Bermacell battery.

The battery is made from only 14 18650s, this tiny 52V batty is nearly as small an e-bike battery as can be made. Each cell is 3000 mAh making a total battery capacity of 156 Wh. All the cells were welded in series with an off the shelf BMS and everything was neatly packaged in an over-sized 3D printed 9V battery case. [Seth] plans to make another smaller battery with less then 100 Wh of capacity so he can take it on a plane, so stay tuned for more coverage!

Continue reading “Making The World’s Smallest E-Bike Battery”