Hackaday Prize Entry: Real Life XEyes

There’s a lot of tech that goes into animatronics, cosplay, and costumes. For their Hackaday Prize entry, [Dasaki] and [Dylan] are taking the eyes in a costume or Halloween prop to the next level with animatronic eyes that look where the wearer of this crazy confabulation is looking. It’s XEyes in real life, and it promises to be a part of some very, very cool costumes.

The mechanics of this system are actually pretty simple — it’s just a few servos joined together to make a pair of robotic eyes move up and down, and left to right. This entire mechanism is mounted on a frame, to which is attached a very small camera pointed directly at the user’s (real) eye. The software is where things get fun. That’s a basic eye-tracking setup, with IR light illuminating the pupil, and a compute unit that can calculate where the user is looking.

For the software, [Dasaki] and [Dylan] have collected a bunch of links, but right now the best solutions are the OpenMV and the Eye of Horus project from last year’s Hackaday Prize. It’s a great project, and a really fun entry for the Automation portion of this year’s Hackaday Prize.

Hackaday Prize Entry: A CNC Scribe For Making Circuit Boards

We’re interested in any device that can make a PCB out of a copper-clad board, and this entry for the Hackaday Prize might be the simplest machine for PCB fabrication yet. It’s called the Projecta, and it’s a simple way to turn Eagle and KiCad files into a real circuit board.

For the home PCB fabricator, there are two ways to go about the process of turning a copper clad board into a real circuit board. The first is a CNC machine. Drop a piece of FR4 under a cutter, and you’ll get a circuit board and a lot of fiberglass dust. The Othermill is great for this, but it is a bit pricey for all but the most ambitious weekend warrior.

The second method of home PCB fabrication chemically etches the copper away. The etch resist mask can be laid down with dry film resist, or with the ever-popular laser printer, magazine, and laminator trick. Either way, the result is an acid-proof covering over the copper you don’t want to get rid of.

While the Projecta looks and sounds like a miniature CNC machine, it doesn’t chew through copper and produce a ton of fiberglass dust. The Projecta scribes the pattern of a circuit board after the copper has been masked off with a sharpie, marker, or other ink-based resist. When the board comes out of the Projecta, there’s a perfect pattern of circuits on a board, ready for the etch tank.

This technique of putting a copper clad board into a CNC machine and etching it later is something we haven’t seen before. There’s a good reason for that – if you’re putting a board under a cutter already, you might as well just chew away the copper while you’re at it.

Just because we haven’t seen this technique before doesn’t mean it’s a bad idea. Because the Projecta is only scribing a bit of ink off a board, the CNC mechanism doesn’t need to be that complex. It doesn’t need to throw a spindle around, and the Projecta can be built down to a price rather easily.

The Projecta is on Kickstarter right now, with the Kickstarter non-early bird price of $600. You can check out the video demo of the Projecta in action below.

Continue reading “Hackaday Prize Entry: A CNC Scribe For Making Circuit Boards”

Hackaday Prize Entry: A Printer For Alternative Photography

Film photography began with a mercury-silver amalgam, and ended with strips of nitrocellulose, silver iodide, and dyes. Along the way, there were some very odd chemistries going on in the world of photography, from ferric and silver salts to the prussian blue found in Cyanotypes and blueprints.

Metal salts are fun, and for his Hackaday Prize entry, [David Brown] is building a printer for these alternative photographic processes. It’s not a dark room — it’s a laser printer designed to reproduce images with weird, strange chemistries.

Cyanotypes are made by applying potassium ferricyanide and ferric ammonium citrate to some sort of medium, usually paper or cloth. This is then exposed via UV light (i.e. the sun), and whatever isn’t exposed is washed off. Instead of the sun, [David] is using a common UV laser diode to expose his photographs. he already has the mechanics of this printer designed, and he should be able to reach his goal of 750 dpi resolution and 8-bit monochrome.

Digital photography will never go away, but there will always be a few people experimenting with light sensitive chemicals. We haven’t seen many people experiment with these strange alternative photographic processes, and anything that gets these really cool prints out into the world is great news for us.

Hackaday Prize Entry: Printem Is Polaroid For PCBs

We are going to great lengths to turn a quick idea into an electronic prototype, be it PCB milling, home etching or manufacturing services that ship PCBs around the world. Unwilling to accept the complications of PCB fabrication, computer science student [Varun Perumal Chadalavada] came up with an express solution for PCB prototyping: Printem – a Polaroid-like film for instant-PCBs.

Continue reading “Hackaday Prize Entry: Printem Is Polaroid For PCBs”

Hackaday Prize Entry: A CPU For Balloons

Launching a high altitude balloon requires a wide breadth of knowledge. To do it right, you obviously need to know electronics and programming to get temperature, pressure, and GPS data. You’ll have to research which cameras will take good pictures and are easily programmable. It’s cold up there, and that means you need some insulation to keep the batteries warm. If you ever want to find your payload, you’ll also need an amateur radio license.

There’s a lot of work that goes into launching high altitude balloons, and for his Hackaday Prize entry, [Jeremy] designed a simple embedded data recorder capable of flying over 100,000 feet.

This flight data recorder for balloons is based on the ever popular ATMega328, and includes humidity, temperature, pressure, accelerometer, gyroscope, and magnetometer sensors. All of this data is recorded to an SD card. The Real Engineers™ who are wont to criticize design decisions they disagree with might laugh at the use of a 7805 voltage regulator, but in this case it makes a lot of sense. The power wasted by a linear regulator isn’t. It’s turned into heat which keeps the batteries alive a little bit longer.

This balloon data recorder has already flown, and [Jeremy] got some great pictures out of it. It’s a great piece of the puzzle for an exceptionally multidisciplinary project, and a great entry for the Hackaday Prize.

Let’s Make Life A Little Better

Chances are you’ve spent a lot of time trying to think of the next great project to hit your workbench. We’ve all built up a set of tools, honed our skills, and set aside some time to toil away in the workshop. This is all for naught without a really great project idea. The best place to look for this idea is where it can make life a little better.

I’m talking about Assistive Technologies which directly benefit people. Using your time and talent to help make lives better is a noble pursuit and the topic of the 2016 Hackaday Prize challenge that began this morning.

Assistive Technology is a vast topic and there is a ton of low-hanging fruit waiting to be discovered. Included in the Assistive Technology ecosystem are prosthetics, mobility, diagnostics for chronic diseases, devices for the aging or elderly and their caregivers, and much more. You can have a big impact by working on your prototype device, either directly through making lives better and by inspiring others to build on your effort.

Need some proof that this is a big deal? The winners of the 2015 Hackaday Prize developed a 3D printed mechanism that links electric wheelchair control with eye movement trackers called Eyedrivomatic. This was spurred by a friend of theirs with ALS who was sometimes stuck in his room all day if he forgot to schedule a caregiver to take him to the community room. The project bridges the existing technologies already available to many people with ALS, providing greater independence in their lives. The OpenBionics Affordable Prosthetic Hands project developed a bionic hand with a clever whiffletree system to enable simpler finger movement. This engineering effort brings down the cost and complexity of producing a prosthetic hand and helps remove some of the barriers to getting prosthetics to those who need them.

The Is the Stove Off project adds peace of mind and promotes safe independence through an Internet connected indicator to ensure the kitchen stove hasn’t been left on and that it isn’t turned on at peculiar times. Pathfinder Haptic Navigation reimagines the tools available to the blind for navigating their world. It uses wrist-mounted ultrasonic sensors and vibration feedback, allowing the user to feel how close their hands are to objects. Hand Drive is another wheelchair add-on to make wheeling yourself around a bit easier by using a rowing motion that doesn’t depend as much on having a strong hand grip on the chair’s push ring.

Assistive TechnologiesIn most cases, great Assistive Technology is not rocket science. It’s clever recognition of a problem and careful application of a solution for it. Our community of hackers, designers, and engineers can make a big impact on many lives with this, and now is the time to do so.

Enter your Assistive Technology in the Hackaday Prize now and keep chipping away on those prototypes. We will look at the progress all of the entries starting on October 3rd, choosing 20 entries to win $1000 each and continue onto the finals. These finalists are eligible for the top prizes, which include $150,000 and a residency at the Supplyframe Design Lab, $25,000, two $10,000 prizes, and a $5,000 prize.

Hackaday Prize Entry: A Charlieplexed Wristwatch

If there’s one thing we like, it’s blinky stuff, and you’re not going to get anything cooler than a display made of tiny SMD LEDs. That’s the idea behind this wristwatch and Hackaday Prize entry. It’s a tiny board, loaded up with an ATmega, a few buttons, and a bunch of LEDs in a big charlieplexed array.

The big feature of this display is the array of LEDs. This is a 16×5 array of 0603 LEDs packed together as tightly as possible. That’s a tiny, high-resolution LED display, but even with the ATmega88 microcontroller powering this board, all the LEDs are individually addressable, and a proper font for displaying the time, or anything else, is already mapped out.

LED matrices are pretty common around these parts, but building a custom display out of SMD LEDs is another level entirely. The best one we’ve seen was this unofficial badge from two DEF CONs ago. That was done the cheater’s way with a bunch of serially addressable LED drivers. This charlieplexed version goes above and beyond, and we’re eagerly awaiting the board files so this display can be replicated easily.