Careful Design Lets 3D Print Emulate Kumiko

Kumiko is a form of Japanese woodworking that uses small cuts of wood (probably offcuts) to produce artful designs. It’s the kind of thing that takes zen-like patience to assemble, and years to master– and who has time for that? [Paper View] likes the style of kumiko, but when all you have is a 3D printer, everything is extruded plastic.

His video, embedded below, focuses mostly on the large tiled piece and the clever design required to avoid more than the unavoidable unsightly seams without excessive post processing. (Who has time for that?) The key is a series of top pieces to hide the edges where the seams come together. The link above, however, gives something more interesting, even if it is on Makerworld.

[Paper View] has created a kumiko-style (out of respect for the craftspeople who make the real thing, we won’t call this “kumiko”) panel generator, that allows one to create custom-sized frames to print either in one piece, or to assemble as in the video. We haven’t looked at MakerWorld’s Parametric Model Maker before, but this tool seems to make full use of its capabilities (to the point of occasionally timing out). It looks like this is a wrapper for OpenScad (just like Thingiverse used to do with Customizer) so there might be a chance if enough of us comment on the video [Paper View] can be convinced to release the scad files on a more open platform.

We’ve featured kumiko before, like this wood-epoxy guitar,  but for ultimate irony points, you need to see this metal kumiko pattern made out of nails. (True kumiko cannot use nails, you see.)

Thanks to [Hari Wiguna] for the tip, and please keep them coming!

Continue reading “Careful Design Lets 3D Print Emulate Kumiko”

Head To Print Head: CNC Vs FDM

It’s a question new makers often ask: “Should I start with a CNC machine or a 3D Printer?”– or, once you have both, every project gets the question “Should I use my CNC or 3D printer?” — and the answer is to both is, of course, “it depends”. In the video embedded below by [NeedItMakeIt] you can see a head-to-head comparison for one specific product he makes, CRATER, a magnetic, click-together stacking tray for tabletop gaming. (He says tabletop gaming, but we think these would be very handy in the shop, too.)

[NeedItMakeIt] takes us through the process for both FDM 3D Printing in PLA, and CNC Machining the same part in walnut. Which part is nicer is absolutely a matter of taste; we can’t imagine many wouldn’t chose the wood, but de gustibus non disputandum est–there is no accounting for taste. What there is accounting for is the materials and energy costs, which are both surprising– that walnut is cheaper than PLA for this part is actually shocking, but the amount of power needed for dust collection is something that caught us off guard, too.

Of course the process is the real key, and given that most of the video follows [NeedItMakeIt] crafting the CNC’d version of his invention, the video gives a good rundown to any newbie just how much more work is involved in getting a machined part ready for sale compared to “take it off the printer and glue in the magnets.” (It’s about 40 extra minutes, if you want to skip to the answer.) As you might expect, labour is by far the greatest cost in producing these items if you value your time, which [NeedItMakeIt] does in the spreadsheet he presents at the end.

What he does not do is provide an answer, because in the case of this part, neither CNC or 3D Printing is “better”. It’s a matter of taste– which is the great thing about DIY. We can decide for ourselves which process and which end product we prefer. “There is no accounting for taste”, de gustibus non disputandum est, is true enough that it’s been repeated since Latin was a thing. Which would you rather, in this case? CNC or 3D print? Perhaps you would rather 3D Print a CNC? Or have one machine to do it all? Let us know in the comments for that sweet, sweet engagement.

While you’re engaging, maybe drop us a tip, while we offer our thanks to [Al] for this one.

Continue reading “Head To Print Head: CNC Vs FDM”

Threaded Insert Press Is 100% 3D Printed

Sometimes, when making a 3D printed object, plastic just isn’t enough. Probably the most common addition to our prints is the ubiquitous brass threaded inset, which has proven its worth time and again over the years in providing a secure screw attachment point with less hassle than a captive nut. Of course to insert these bits of machined brass, you need to press them in, and unless you’ve got a very good hand with a soldering iron it’s usually a good idea to use a press of some sort. [TimNummy]  shows us that, ironically enough, making such a press is perfectly doable using only printed parts. Well, save for the soldering iron, of course.

He calls it the Superserter. Not only is it 100% printed plastic, but the entire design fits on a single 256 mm by 256 mm bed. In his case it was done on the Bambulab X1C, but it’s a common enough print bed size and can be printed without any supports. It’s even sized to fit the popular Gridfinity standard for a neat and tidy desk and handy bin placement for the inserts.

[TimNummy] clearly spent some time thinking about design for 3D printed manufacturing in order to create an assembly that does not need linear rails, sliders, or bearings as other press projects often do. The ironic thing is that if that same amount of effort went into other designs, it might eliminate the need for threaded inserts entirely.

If you haven’t delved into the world of threaded inserts, we put up a how-to-guide a few years ago. If you’re wondering if you can get away with just printing threads, the answer is “maybe”– we highlighted a video comparing printed threads with different inserts a while back to get you started thinking about the design limitations there.

Continue reading “Threaded Insert Press Is 100% 3D Printed”

Turning Up The Heat On HT-PLA’s Marketing

PLA is probably the most-printed filament on the market these days, and is there any wonder? It’s cheap, it’s easy, and it doesn’t poison you (as quickly as its competitors, anyway). What it doesn’t do very well is take the heat. Polymaker’s new HT-PLA formulation promises to solve that, and [My Tech Fun] put those claims to the test in a recent video.

Polymaker claims its HT-PLA is heat-stable up-to 150 C, but still prints as easily as standard PLA at up to 300 mm/s. By “heat stable” they mean able to maintain dimensions and form at that temperature when not under any load, save perhaps its own weight. If you need high-temp mechanical properties, they also offer a glass-fiber infused HT-PLA-GF that they claim is heat resistant up to 110 C (that is, able to withstand load at that temperature) which is hard to sneeze at, considering you  you could print it on a stock Ender so long as you tossed a hardened nozzle on it.

Now it’s not a free lunch: to get the very best results, you do need to anneal the parts, which can introduce shrinkage and warping in HT-PLA, but that’s where HT-PLA-GF shines. If you want to see the results of the tests you can jump to 19:27 in the video, but the short version is that this is mechanically like PLA and can take the heat.

The verdict? If you like printing PLA and want to shove something in a hot car, you might want to try HT-PLA. Otherwise, it’s just like PLA. It prints like PLA, it looks like PLA, and when cold it behaves mechanically like PLA, which we suppose was rather what Polymaker was going for. There is no word yet on whether the additives that make it high-temp increase off-gassing or toxicity but since this stuff prints like PLA and can stand a little airflow, it should be easy to ventilate, which might make for fewer trade-offs when building an enclosure.

What do you think, will you be trying HT-PLA anytime soon? Let us know in the comments.

Continue reading “Turning Up The Heat On HT-PLA’s Marketing”

SPACEdeck Is Half Cyberdeck, Half Phone Case, All Style

It’s been at least a few hours since Hackaday last featured a cyberdeck, so to avoid the specter of withdrawal, we present you with [Sp4m]’s SPACEdeck, a stylish phone-based cyberdeck!

The case features a great message in an even better font.The SPACEdeck takes a Samsung Galaxy S24 and puts it into a handsome clamshell case with a wireless keyboard, turning the phone into a tiny-screened laptop that urges you not to panic. Is The Hitchiker’s Guide to The Galaxy available on the Playstore? Well, the e-book of the novel surely is, and having access to Wikipedia comes close. The design is building off (or out from, as the case may be) a 3D-printed phone case for the S24 by Digital Proto.

Given that the Galaxy S24 has more horsepower than the ancient Macbook we’re writing this on, this setup is probably going to be more useful than you might think, especially when paired with Termux to give you the full power of Linux.

Like some modern laptops, the screen can rotate 180 degrees for when the keyboard isn’t needed. The case will also allow for Nintendo Switch2 joycon integration, but that’s a work in progress for now. The connection points will also be modular so other accessories can be used. All files will be released once [Sp4m] is happy with how the Joycons are holding on, hopefully with a license that will allow us to remix this for other phones.

Given the supercomputers in our pockets, it’s really a wonder we don’t see more android-based cyberdecks, but most seem to stick to SBCs. Lately it seems the slabtop form-factor has been equally popular for cyberdecks, but it’s hard to beat a clamshell for practicality.

Render of a simple clockwork orrery

Planetary Poetry With A Tiny Digital Core

Some hacks just tickle the brain in a very particular way. They’re, for a change, not overly engineered; they’re just elegant, anachronistic, and full of mischief. That’s exactly what [Frans] pulls off with A Gentleman’s Orrery, a tiny, simple clockwork solar system. Composed of shiny brass and the poise of 18th-century craftsmanship, it hides a modern secret: there’s barely any clockwork inside. You can build it yourself.

Mechanism of a simple clockwork orreryPeek behind the polished face and you’ll find a mechanical sleight of hand. This isn’t your grandfather’s gear-laden planetarium. Instead of that, it operates on a pared-down system that relies on a stepper motor, driving planetary movement through a 0.8 mm axle nested inside a 1 mm brass tube. That micro-mechanical coupling, aided by a couple of bevel gears, manages to rotate the Moon just right, including its orientation. Most of the movement relies on clever design, not gear cascades. The real wizardry happens under the hood: a 3D-printed chassis cradles an ESP32-C6, a TTP223 capacitive touch module, STSPIN220 driver, and even a reed switch with magnetic charging.

You can even swap out the brass for a stone shell where the full moon acts as the touch control. It’s tactile, it’s poetic, and therefore, a nice hack for a weekend project. To build it yourself, read [Frans]’ Instructable.

Continue reading “Planetary Poetry With A Tiny Digital Core”

Making A Treadmill Into A 3D Printer

A treadmill-style bed can be a great addition to a 3D printer. It allows prints to be shifted out of the build volume as printing continues, greatly increasing the size and flexibility of what you can print. But [Ivan Miranda] and [Jón Schone] had a question. Instead of making a treadmill to suit a 3D printer, what if you just built a 3D printer on top of a full-size treadmill?

The duo sourced a piece of real gym equipment for this build. They then set about building a large-scale 3D printer on top of this platform. The linear rails were first mounted on to the treadmill’s frame, followed by a gantry for the print head itself and mounts for the necessary stepper motors. The printer also gained a custom extra-large extruder to ensure a satisfactory print speed that was suitable for the scale of the machine. From there, it was largely a case of fitting modules and running cables to complete the printer.

Soon enough, the machine was printing hot plastic on the treadmill surface, thereby greatly expanding the usable print volume. It’s a little tricky to wrap your head around at first, but when you see it in action, it’s easy to see the utility of a build like this, particularly at large scale. [Ivan] demonstrated this by printing a massive girder over two meters long.

We started seeing attempts at building a belt-equipped “infinite build volume” printer back in 2017, and it took awhile before the concept matured enough to be practical. Even today, they remain fairly uncommon.

Continue reading “Making A Treadmill Into A 3D Printer”