Building A Sliding Tile Clock

Hackers like making clocks, and we like reporting on them around these parts. Particularly if they’ve got a creative mechanism that we haven’t seen before. This fine timepiece from [gooikerjh] fits the bill precisely—it’s a sliding tile clock!

The brains of the build is an Arduino Nano ESP32. No, that’s not a typo. It’s basically an ESP32 in a Nano-like form factor. It relies on its in-built WiFi hardware to connect to the internet and synchronize itself with time servers so that it’s always showing accurate time. The ESP32 is set up to control a set of four stepper motors with a ULN2003 IC, and they run the neat time display mechanism.

All the custom parts are 3D printed, and the sliding tile concept is simple enough. There are four digits that show the time. Each digit contains number tiles that slide into place as the digit rotates. To increment the digit by one, it simply needs to be rotated 180 degrees by the relevant stepper motor, and the next number tile will slide into place.

We love a good clock at Hackaday—the more mechanical, the better. If you’re cooking up your own nifty and enigmatic clocks at home, don’t hesitate to drop us a line!

A blue-gloved hand holds a glass plate with a small off-white rectangular prism approximately one quarter the area of a fingernail in cross-section.

AI Helps Researchers Discover New Structural Materials

Nanostructured metamaterials have shown a lot of promise in what they can do in the lab, but often have fatal stress concentration factors that limit their applications. Researchers have now found a strong, lightweight nanostructured carbon. [via BGR]

Using a multi-objective Bayesian optimization (MBO) algorithm trained on finite element analysis (FEA) datasets to identify the best candidate nanostructures, the researchers then brought the theoretical material to life with 2 photon polymerization (2PP) photolithography. The resulting “carbon nanolattices achieve the compressive strength of carbon steels (180–360 MPa) with the density of Styrofoam (125–215 kg m−3) which exceeds the specific strengths of equivalent low-density materials by over an order of magnitude.”

While you probably shouldn’t start getting investors for your space elevator startup just yet, lighter materials like this are promising for a lot of applications, most notably more conventional aviation where fuel (or energy) prices are a big constraint on operations. As with any lab results, more work is needed until we see this in the real world, but it is nice to know that superalloys and composites aren’t the end of the road for strong and lightweight materials.

We’ve seen AI help identify battery materials already and this seems to be one avenue where generative AI isn’t just about making embarrassing photos or making us less intelligent.

A blue and white, 3D printed rose sits on a black surface with a fuzzy tan background behind it.

Thermorphs: Self-Folding 3D Prints

Prints separating from the build plate or warping when you don’t want them to is a headache for the additive manufacturer. [CNC Kitchen] walks us through a technique to use that warping to our advantage.

Based on a paper by researchers at the Morphing Matter Lab at UC Berkeley, [CNC Kitchen] wanted to try making 3D printed objects that could self-assemble when placed in hot water. Similar to a bimetal strip that you find in simple thermostats, the technique takes advantage of the stresses baked into the print and how they can relax when reaching the glass transition temperature of the polymer. By printing joints with PLA and TPU layers, you can guide the deformation in the direction you wish, and further tune the amount of stress in the part by changing the print speed of different sections.

[CNC Kitchen] found that Hilbert curve infill slows the printer down sufficiently to create relatively stress-free sections of a print to create flat sections which is an improvement over the original researchers’ all TPU flat sections with respect to rigidity. We’ve covered how to reduce warping in 3D prints, but now we can use those techniques in reverse to design self-assembling structures. These parts, being thermoplastic, can also be heated, reformed, and then exhibit shape memory when placed back into hot water. It’s very experimental, but we’re curious to see what sort of practical or artistic projects could be unlocked with this technique.

We’ve seen a few other interesting techniques with folded objects like laser cutter origami, some flat-to-folded 3D prints that might be interesting to try with this technique, and also folded hybrid mechanisms made with laser cutting and 3D printing.

Continue reading “Thermorphs: Self-Folding 3D Prints”

A guy's leg encased in a 3D printer showing a fresh printed tattoo

Do, Dare Or Don’t? Getting Inked By A 3D Printer

This unusual tattoo hack by [Emily The Engineer] is not for the weak of heart, but let’s be frank: we kind of know her for that. And she gives out a warning, albeit at a good 10 minutes in, to not do this at home. What she’s about to do takes creativity and tech obsession to the next level: to transform a 3D printer into a functional tattoo machine. Therefore, [Emily] ingeniously modified one of her standard 3D printers to operate two-dimensionally, swapped its plastic extruder for a tattoo gun, and, yes, even managed to persuade a willing participant to try it out.

The entire process can be seen in [Emily]’s video below, which humorously yet meticulously documents the journey from Sharpie test runs to actually inking skin. Aside from a lot of tongue-in-cheek trial and error, this project requires a sheer amount of problem-solving. [Emily] employs firmware edits to bypass safety checks, and clever hardware adaptations to ensure smooth transitions between strokes. One impressive upgrade is the emergency solenoid system, a literal panic button to stop the machine mid-tattoo in case of trouble—a critical addition for something with needles involved!

This hack sits on the edge of DIY body modification, raising eyebrows and technical questions alike. If you missed the warning and are now frantically searching for tattoo removal options, know we’ve covered some (but you might be rightfully scared of automating that, too, at this point). If you haven’t lifted a finger while reading this, just do the safe thing: watch [Emily]’s video, and tinker about the subsequent purposes this discovery creates for 3D printing or tattoo art.

Continue reading “Do, Dare Or Don’t? Getting Inked By A 3D Printer”

A dismantled drill on a cluttered workbench

Going Brushless: Salvaging A Dead Drill

Let’s face it—seeing a good tool go to waste is heartbreaking. So when his cordless drill’s motor gave up after some unfortunate exposure to the elements, [Chaz] wasn’t about to bin it. Instead, he embarked on a brave journey to breathe new life into the machine by swapping its dying brushed motor for a sleek brushless upgrade.

Things got real as [Chaz] dismantled the drill, comparing its guts to a salvaged portable bandsaw motor. What looked like an easy swap soon became a true hacker’s challenge: incompatible gear systems, dodgy windings, and warped laminations. Not discouraged by that, he dreamed up a hybrid solution: 3D-printing a custom adapter to make the brushless motor fit snugly into the existing housing.

The trickiest part was designing a speed control mechanism for the brushless motor—an impressively solved puzzle. After some serious elbow grease and ingenuity, the franken-drill emerged better than ever. We’ve seen some brushless hacks before, and this is worth adding to the list. A great tool hack and successful way to save an old beloved drill. Go ahead and check out the video below!

Continue reading “Going Brushless: Salvaging A Dead Drill”

Software Lets You Paint Surface Patterns On 3D Prints

Just when you think you’ve learned all the latest 3D printing tricks, [TenTech] shows up with an update to their Fuzzyficator post-processing script. This time, the GPL v3 licensed program has gained early support for “paint-on” textures.

Fuzzyficator works as a plugin to OrcaSlicer, Bambu Studio, and PrusaSlicer. The process starts with an image that acts as a displacement map. Displacement map pixel colors represent how much each point on the print surface will be moved from its original position. Load the displacement map into Fuzzyficator, and you can paint the pattern on the surface right in the slicer.

This is just a proof of concept though, as [TenTech] is quick to point out. There are still some bugs to be worked out. Since the modifications are made to the G-code file rather than the model, the software has a hard time figuring out if the pattern should be pressed into the print, or lifted above the base surface. Rounded surfaces can cause the pattern to deform to fit the surface.

If you’d like to take the process into your own hands, we’ve previously shown how Blender can be used to add textures to your 3D prints.

Continue reading “Software Lets You Paint Surface Patterns On 3D Prints”

3D-Printed Boat Feeds The Fishes

In most natural environments, fish are able to feed themselves. However, if you wanted to help them out with some extra food, you could always build a 3D-printed boat to do the job for you, as [gokux] did.

The concept is simple enough—it’s a small radio-controlled boat that gets around the water with the aid of two paddle wheels. Driven together, the paddle wheels provide thrust, and driven in opposite directions, they provide steering. A SeeedStudio XIAO ESP32 is the brains of the operation. It listens into commands from the controller and runs the paddle drive motors with the aid of a DRV8833 motor driver module. The custom radio controller is it itself running on another ESP32, and [gokux] built it with a nice industrial style joystick which looks very satisfying to use. The two ESP32s use their onboard wireless hardware to communicate, which keeps things nicely integrated. The boat is able to putter around on the water’s surface, while using a servo-driven to deliver small doses of food when desired.

It’s a neat build, and shows just what you can whip up when you put your 3D printer to good use. If you’d like to build a bigger plastic watercraft, though, you can do that too. Video after the break.

Continue reading “3D-Printed Boat Feeds The Fishes”