2025 One Hertz Challenge: Timekeeping At One Becquerel

The Becquerel (Bq) is an SI unit of radioactivity: one becquerel is equivalent to one radioactive decay per second. That absolutely does not make it equivalent to one hertz — the random nature of radioactive decay means you’ll never get one pulse every second — but it does make it interesting. [mihai.cuciuc] certainly thought so, when he endeavored to create a clock that would tick at one becquerel.

The result is an interesting version of a Vetinari Clock, first conceived of by [Terry Pratchett] in his Discworld books. In the books, the irregular tick of the clock is used by Lord Vetinari as a form of psychological torture. For some reason, imposing this torture on ourselves has long been popular amongst hackers.

Without an impractical amount of shielding, any one-becquerel source would be swamped by background radiation, so [mihai] had to get creative. Luckily, he is the creator of the Pomelo gamma-ray spectroscope, which allowed him to be discriminating. He’s using an Am-241 source, but just looking for the characteristic 59.5 KeV gamma rays was not going to cut it at such a low count rate. Instead he’s using two of the Pomelo solid-state scintillation as a coincidence detector, with one tuned for the Am-241’s alpha emissions. When both detectors go off simultaneously, that counts as an event and triggers the clock to tick.

How he got exactly one becquerel of activity is a clever hack, too. The Am-241 source he has is far more active than one decay per second, but by varying the distance from the gamma detector he was able to cut down to one detection per second using the inverse square law and the shielding provided by Earth’s atmosphere. The result is a time signal that is a stable one hertz… if averaged over a long enough period. For now, anyway. As the Am-241 decays away, its activity decreases, and [mihai] admits the clock loses about 0.4 seconds per day.

While we won’t be giving the prize for accuracy in this contest, we are sure Lord Vetinari would be proud. The Geiger-counter sound effect you can hear in the demo video embedded below is great touch. It absolutely increases the psychic damage this cursed object inflicts.

Continue reading “2025 One Hertz Challenge: Timekeeping At One Becquerel”

Plasma Discharges Show You Where The Radiation Is

Depending on the context of the situation, the staccato clicks or chirps of a Geiger counter can be either comforting or alarming. But each pip is only an abstraction, an aural indication of when a particle or ray of ionizing radiation passed through a detector. Knowing where that happened might be important, too, under the right circumstances.

While this plasma radiation detector is designed more as a demonstration, it does a pretty good job at localizing where ionization events are happening. Designed and built by [Jay Bowles], the detector is actually pretty simple. Since [Jay] is the type of fellow with plenty of spare high-voltage power supplies lying around, he took a 6 kV flyback supply from an old build and used it here. The detector consists of a steel disk underneath a network of fine wires. Perched atop a frame of acrylic and powered by a 9 V battery, the circuit puts high-voltage across the plate and the wires. After a substantial amount of tweaking, [Jay] got it adjusted so that passing alpha particles from a sample of americium-241 left an ionization trail between the conductors, leading to a miniature lightning bolt.

In the video below, the detector sounds very similar to a Geiger counter, but with the added benefit of a built-in light show. We like the way it looks and works, although we’d perhaps advise a little more caution to anyone disassembling a smoke detector. Especially if you’re taking apart Soviet-era smoke alarms — you might get more than you bargained for.

Continue reading “Plasma Discharges Show You Where The Radiation Is”

Alternative Uses For Nuclear Waste

Nuclear power is great if you want to generate a lot of electricity without releasing lots of CO2 and other harmful pollutants. However, the major bugbear of the technology has always been the problem of waste. Many of the byproducts from the operation of nuclear plants are radioactive, and remain so for thousands of years. Storing this waste in a safe and economical fashion continues to be a problem.

Alternative methods to deal with this waste stream continue to be an active area of research. So what are some of the ways this waste can be diverted or reused?

Fast Breeders Want To Close The Fuel Cycle

The Superphénix reactor in France is one of a handful of operational fast-neutron reactor designs.

One of the primary forms of waste from a typical nuclear light water reactor (LWR) is the spent fuel from the fission reaction. These consist of roughly 3% waste isotopes, 1% plutonium isotopes, and 96% uranium isotopes. This waste is high in transuranic elements, which have half-lives measured in many thousands of years. These pose the biggest problems for storage, as they must be securely kept in a safe location for lengths of time far exceeding the life of any one human society.

The proposed solution to this problem is to instead use fast-neutron reactors, which “breed” non-fissile uranium-238 into plutonium-239 and plutonium-240, which can then be used as fresh fuel. Advanced designs also have the ability to process out other actinides, also using them as fuel in the fission process. These reactors have the benefit of being able to use almost all the energy content in uranium fuel, reducing fuel use by 60 to 100 times compared to conventional methods.

Continue reading “Alternative Uses For Nuclear Waste”