Clean And Minimal Self-balancing Robot

The VertiBOT is a self balancing robot project taken on for the purpose of exploring how the sensors work in conjunction with some PID algorithms.

[Miguel] didn’t roll any extras into the build. But you have to admit that makes it look interesting. There’s almost nothing to it and yet, as you can see in the clip after the break, he accomplished everything he set out to.

The body and wheels are 3D printed, with black bands for tires to help give it some traction. Note the connection in the center of the body which allowed him to make a longer part by printing in two stages. On the electronic side of things he’s using an Arduino Nano. A level converter lets it communicate with the 6 DOF IMU board which is used to detect movement. Three potentiometers provide a way for him to tweak the PID loop without having to bother with reflashing any code. And of course there’s an option to control it remotely thanks to a Bluetooth module also in the mix.

Continue reading “Clean And Minimal Self-balancing Robot”

Wireless Solar Water Heater Controller Ensures Hot Water Every Time

water-heater-controller

[Peter Sobey] had a solar hot water heater installed in his home, which worked great until he relocated his kitchen to a neighboring room. Now a good bit further from the tank, the hot water reaching his sink was tepid at best due to the increased distance and temperature limiting mixer valve in the new heater.

He installed a salvaged solar panel and water tank solely for use in his kitchen, but as the panel was located above the tank, he had to find a way to actively monitor and control the water temperature. His pump and valve system was originally driven with an off the shelf PICAXE-based controller, but he eventually got the urge to add a wireless display and control panel to the mix.

A pair of Arduino Nanos run the show now, one of which resides in the pump controller box, while the other is used in the temperature display box in his kitchen. He uses a set of Bluetooth modules to link the Arduinos together, relaying temperature data and allowing him to send the pump controller manual commands if needed.

He says the system works a treat, and he’s much happier with his homebrew controller than the one he used originally.

Adding Keypad Security To Your Automobile’s Ignition System

[BadWolf] managed to make some free time to get back to his own electronic projects. This time around he’s created a security system for his car. It’s patched into the ignition, preventing the engine from starting when the key is turned. A driver must first insert the key, then type the combination on a keypad in the center console before the car will fire up.

While he was working on the project he also decided to add a start button to the dash-board (we think it does make it look like a later model vehicle). The keypad is driven by an Arduino Nano which has the start code stored in it. Power for the system is provided by a USB hub hidden behind the dash which he thinks will also come in handy with future hacks.

When the proper code is entered, you’ll hear a rendition of the Super Mario Bros. theme. The speaker also lends a pleasant beep with each keypress. See the demo clip after the break to hear it for yourself.

Continue reading “Adding Keypad Security To Your Automobile’s Ignition System”

Arduino Nano Updated

The official Arduino Nano design has been updated to version 3.0. Like other new Arduino designs, it’s using the ATmega328 instead of the ATmega168. It’s also a slightly more reasonable $35. The small board is designed to be plugged directly into a breadboard and accessed via mini USB cable. This new design is also two layers instead of four making it easier to produce and modify. The new Nanos will ship at the end of the month.

Custom Car Door Keypad

carkeypad

[Michael] has a keypad in his previous car’s door and he missed it enough to hack one into his Dodge Caliber. He bought a Ford keypad and mounted it inside his door with some custom electronics. He started with an Arduino nano to receive and authenticate button presses. This then splices into wires in the door that control the door lock. The program has a 5-digit code to unlock the door, but simply pressing 1 twice will lock the doors. He also implemented a lockout feature to prevent people from brute-forcing the combination. Although it isn’t wireless, it’s significantly simpler.

[thanks Michael]