Fixing Astronomy In The Blink Of An Eye

If you’ve ever set a telescope up in your backyard, you probably learned how quick any kind of lighting ruins your observation. In fact, a recent study found that every year, about 10% of the stars that were visible the previous year disappear in the mishmash of light scattering through the atmosphere. A company called StealthTransit has a solution: blink the lights in a controlled way. They have an animated video explaining the concept.

The technology, named DarkSkyProtector, assumes there is LED lighting and that the light’s owner (or manufacturer) will put a simple device in line that causes the LED to blink imperceptibly. As you might guess, the telescope — presumably some giant observatory uses a GPS receiver to synchronize and then images only when the LED lights all turn off. That presumes, of course, that you have a significant number of lights under control.

It is hard to imagine every city and home having astronomy-safe lighting. However, we can imagine a university installing a lighting system on its campus to protect night viewing. The system underwent a test in the Caucasus mountains using a 24-inch telescope and was apparently quite successful with a shutter rate of about 150 Hz. We weren’t clear if each LED control module has to have a GPS-disciplined time source, but it seems like you’d have to. However, the post talks about how the bulbs wouldn’t cost more to make than conventional ones, so maybe they don’t have anything fancy in them.

You can see satellites in the day with some tech tricks. Want to check out observatories? Hit the road. Or, get time on a telescope with Skynet University.

An observatory atop a hill

The Ultimate US Astronomy Roadtrip

Have 73 hours to kill and fancy a 4,609-mile road trip? Then you can check out some of the best observatories in the US (although we would probably recommend taking a couple of weeks rather than cramming the trip into three days, so you can spend at least one night stargazing at each).

Matador Network compiled a list of what they call the top ten US observatories, and published the daunting map you see above. Even if your trip is plagued by cloudy skies, rest assured the destinations will still be worth a visit. From Arizona’s Lowell Observatory, where the evidence Edwin Hubble used to formulate the Big Bang Theory was collected, to the Green Bank National Radio Observatory in West Virginia, home of Earth’s largest fully-steerable radio telescope, each site has incredibly rich history.

All of the observatories are open to the public in some way or another, but some are only accessible a few days per month, so make sure you plan your trip carefully! You may even want to travel with your own homemade telescope, Game Boy astrphotography rig, or, if you’re really dedicated, portable radio telescope.

Continue reading “The Ultimate US Astronomy Roadtrip”

Multispectral Imaging Shows Erased Evidence Of Ancient Star Catalogue

Ancient Greek astronomer Hipparchus worked to accurately catalog and record the coordinates of celestial objects. But while Hipparchus’ Star Catalogue is known to have existed, the document itself is lost to history. Even so, new evidence has come to light thanks to patient work and multispectral imaging.

Hipparchus’ Star Catalogue is the earliest known attempt to record the positions of celestial bodies (predating Claudius Ptolemy’s work in the second century, which scholars believe was probably substantially based on Hipparchus) but direct evidence of the document is slim. Continue reading “Multispectral Imaging Shows Erased Evidence Of Ancient Star Catalogue”

An All Sky Camera To Watch The Night Sky

If you have any astronomer friends you’ll soon discover that theirs is a world of specialist high-quality optical equipment far ahead of the everyday tinkerer, and for mere mortals the dream of those amazing deep space images remains out of reach. It’s not completely impossible for the night sky to deliver impressive imagery on a budget though, as [David Schneider] shows us with a Raspberry Pi powered whole sky camera.

The project was born of seeing a meteor and idly wondering whether meteorite landing sites could be triangulated from a network of cameras, something he quickly discovered had already been done with some success. Along the way though he found the allsky camera project, and decided to build his own. This took the form of a Raspberry Pi 3 and a Pi HQ camera with a wide-angle lens mounted pointing skywards under an acrylic dome. It’s not the Hubble Space Telescope by any means, but the results are nevertheless impressive particularly in a timelapse. We wish there were less light pollution where we live so we could try it for ourselves.

Long-term readers may remember that this isn’t the first Pi sky camera we’ve brought you, for example this one is from 2020.

Continue reading “An All Sky Camera To Watch The Night Sky”

Huygens’ Telescopes Weren’t Very Good, Now We Think We Know Why

[Christiaan Huygens] was a pretty decent mathematician and scientist by the standards of the 17th century. However, the telescopes he built were considered to be relatively poor in quality for the period. Now, as reported by Science News, we may know why. The well-known Huygens may have needed corrective glasses all along.

Much of Huygens’ astronomical work concerned Saturn.

Huygens is known for, among other things, his contribution to astronomy. He discovered Titan, the largest moon of Saturn, and also studied the planet’s rings. He achieved this despite telescopes that were described at the time as fuzzy or blurrier than they otherwise should have been.

Huygens built two-lens telescopes, and would keep a table of which lenses to combine for different magnification levels. However, his calculations don’t align well with today’s understanding of optics. As it turns out, Huygens may have been nearsighted, which would account for why his telescopes were blurry. To his vision, they may indeed have been sharp, due to the nature of his own eyes. Supporting this are contemporary accounts that suggest Huygens father was nearsighted, with the condition perhaps running in the family. According to calculations by astronomer Alexander Pietrow, Huygens may have had 20/70 vision, in which he could only read at 20 feet what a person with “normal” vision could read from 70 feet away.

It’s a theory that answers a mildly-interesting mystery from many hundreds of years ago. These days, our troubles with telescopes are altogether more complex. If only a simple pair of glasses could solve NASA’s problems!

NASA’s Flying Telescope Is Winding Down Operations

NASA’s Hubble Space Telescope is arguably the best known and most successful observatory in history, delivering unprecedented images that have tantalized the public and astronomers alike for more than 30 years. But even so, there’s nothing particularly special about Hubble. Ultimately it’s just a large optical telescope which has the benefit of being in space rather than on Earth’s surface. In fact, it’s long been believed that Hubble is not dissimilar from contemporary spy satellites operated by the National Reconnaissance Office — it’s just pointed in a different direction.

There are however some truly unique instruments in NASA’s observational arsenal, and though they might not have the name recognition of the Hubble or James Webb Space Telescopes, they still represent incredible feats of engineering. This is perhaps best exemplified by the Stratospheric Observatory for Infrared Astronomy (SOFIA), an airborne infrared telescope built into a retired airliner that is truly one-of-a-kind.

Unfortunately this unique aerial telescope also happens to be exceptionally expensive to operate; with an annual operating cost of approximately $85 million, it’s one of the agency’s most expensive ongoing astrophysics missions. After twelve years of observations, NASA and their partners at the German Aerospace Center have decided to end the SOFIA program after its current mission concludes in September.

With the telescope so close to making its final observations, it seems a good time to look back at this incredible program and why the US and German space centers decided it was time to put SOFIA back in the hangar.

Continue reading “NASA’s Flying Telescope Is Winding Down Operations”

StarPointer Keeps Scope On Target With Stellarium

On astronomical telescopes of even middling power, a small “finderscope” is often mounted in parallel to the main optics to assist in getting the larger instrument on target. The low magnification of the finderscope offers a far wider field of view than the primary telescope, which makes it much easier to find small objects in the sky. Even if your target is too small or faint to see in the finderscope, just being able to get your primary telescope pointed at the right celestial neighborhood is a huge help.

But [Dilshan Jayakody] still thought he could improve on things a bit. Instead of a small optical scope, his StarPointer is an electronic device that can determine the orientation of the telescope it’s mounted to. As the ADXL345 accelerometer and HMC5883L magnetometer inside the STM32F103C8 powered gadget detect motion, the angle data is sent to Stellarium — an open source planetarium program. Combined with a known latitude and longitude, this allows the software to show where the telescope is currently pointed in the night sky.

As demonstrated in the video after the break, this provides real-time feedback which is easy to understand even for the absolute beginner: all you need to do is slew the scope around until the object you want to look at it under the crosshairs. While we wouldn’t recommend looking at a bright computer screen right before trying to pick out dim objects in your telescope’s eyepiece, we can certainly see the appeal of this “virtual” finderscope.

Then again…who said this technique had to be limited to optical observations? As the StarPointer is an open hardware project, you could always integrate the tech into that DIY radio telescope you’ve always dreamed of building in the backyard.

Continue reading “StarPointer Keeps Scope On Target With Stellarium