All The Stars, All The Time

Some of the largest objects in the night sky to view through a telescope are galaxies and supernova remnants, often many times larger in size than the moon but generally much less bright. Even so, they take up a mere fraction of the night sky, with even the largest planets in our solar system only taking up a few arcseconds and stars appearing as point sources. There are more things to look at in the sky than there are telescopes, regardless of size, so it might almost seem like an impossible task to see everything. Yet that’s what this new telescope in Chile aims to do.

The Vera C. Rubin Observatory plans to image the entire sky every few nights over a period lasting for ten years. This will allow astronomers to see the many ways the cosmos change with more data than has ever been available to them. The field of view of the telescope is about 3.5 degrees in diameter, so it needs to move often and quickly in order to take these images. At first glance the telescope looks like any other large, visible light telescope on the tops of the Andes, Mauna Kea, or the Canary Islands. But it has a huge motor to move it, as well as a large sensor which generates a 3200-megapixel image every 30 seconds.

In many ways the observatory’s telescope an imaging technology is only the first part of the project. A number of machine learning algorithms and other software solutions have been created to help astronomers sift through the huge amount of data the telescope is generating and find new irregularities in the data, from asteroids to supernovae. First light for the telescope was this month, June 2025, and some of the first images can be seen here. There have been a number of interesting astronomical observations underway lately even excluding the JWST. Take a look at this solar telescope which uses a new algorithm to take much higher resolution images than ever before.

Adaptive Optics Take Clearest Pictures Of The Sun Yet

It’s sometimes easy to forget that the light in the sky is an actual star. With how reliable it is and how busy we tend to be as humans, we can take that incredible fact and stow it away and largely go on with our lives unaffected. But our star is the thing that gives everything on the planet life and energy and is important to understand. Humans don’t have a full understanding of it either; there are several unsolved mysteries in physics which revolve around the sun, the most famous of which is the coronal heating problem. To help further our understanding a number of scientific instruments have been devised to probe deeper into it, and this adaptive optics system just captures some of the most impressive images of it yet.

Adaptive optics systems are installed in terrestrial telescopes to help mitigate the distortion of incoming light caused by Earth’s atmosphere. They generally involve using a reference source to measure these distortions, and then make changes to the way the telescope gathers light, in this case by making rapid, slight changes to the telescope’s mirror. This system has been installed on the Goode Solar Telescope in California and has allowed scientists to view various solar phenomena with unprecedented clarity.

The adaptive optics system here has allowed researchers to improve the resolution from the 1000 km resolution of other solar telescopes down to nearly the theoretical limit of this telescope—63 km. With this kind of resolution the researchers hope that this clarity will help shine some light on some of the sun’s ongoing mysteries. Adaptive optics systems like this aren’t just used on terrestrial telescopes, either. This demonstration shows how the adaptive optics system works on the James Webb Space Telescope.

Thanks to [iliis] for the tip!

Two telescopes looking into the night sky.

Making A Backyard Observatory Complete With Retractable Roof

Here’s one for our astronomy geeks. Our hacker [arrow] has made their own observatory!

This particular video is a bit over ten minutes long and is basically a montage; there is no narration or explanation given, but you can watch clear progress being made and the ultimate success of the backyard facility.

Obviously the coolest thing about this building is that the roof can be moved, but those telescope mounts look pretty sexy too. About halfway through the video the concrete slab that was supporting one metal mounting pole gets torn up so that two replacements can be installed, thereby doubling the capacity of the observatory from one telescope to two.

Continue reading “Making A Backyard Observatory Complete With Retractable Roof”

Catching The View From The Edge Of Space

Does “Pix or it didn’t happen” apply to traveling to the edge of space on a balloon-lofted solar observatory? Yes, it absolutely does.

The breathtaking views on this page come courtesy of IRIS-2, a compact imaging package that creators [Ramón García], [Miguel Angel Gomez], [David Mayo], and [Aitor Conde] recently decided to release as open source hardware. It rode to the edge of space aboard Sunrise III, a balloon-borne solar observatory designed to study solar magnetic fields and atmospheric plasma flows.

Continue reading “Catching The View From The Edge Of Space”

Solar Dynamics Observatory: Our Solar Early Warning System

Ever since the beginning of the Space Age, the inner planets and the Earth-Moon system have received the lion’s share of attention. That makes sense; it’s a whole lot easier to get to the Moon, or even to Mars, than it is to get to Saturn or Neptune. And so our probes have mostly plied the relatively cozy confines inside the asteroid belt, visiting every world within them and sometimes landing on the surface and making a few holes or even leaving some footprints.

But there’s still one place within this warm and familiar neighborhood that remains mysterious and relatively unvisited: the Sun. That seems strange, since our star is the source of all energy for our world and the system in general, and its constant emissions across the electromagnetic spectrum and its occasional physical outbursts are literally a matter of life and death for us. When the Sun sneezes, we can get sick, and it has the potential to be far worse than just a cold.

While we’ve had a succession of satellites over the last decades that have specialized in watching the Sun, it’s not the easiest celestial body to observe. Most spacecraft go to great lengths to avoid the Sun’s abuse, and building anything to withstand the lashing our star can dish out is a tough task. But there’s one satellite that takes everything that the Sun dishes out and turns it into a near-constant stream of high-quality data, and it’s been doing it for almost 15 years now. The Solar Dynamics Observatory, or SDO, has also provided stunning images of the Sun, like this CGI-like sequence of a failed solar eruption. Images like that have captured imaginations during this surprisingly active solar cycle, and emphasized the importance of SDO in our solar early warning system.

Continue reading “Solar Dynamics Observatory: Our Solar Early Warning System”

A black motion system with two stepper motors. A green circuit board is fixed in a rotating cage in the center, and the entire assembly is on a white base atop a green cutting mat. Wires wind through the assembly.

Pi-lomar Puts An Observatory In Your Hands

Humans have loved looking up at the night sky for time immemorial, and that hasn’t stopped today. [MattHh] has taken this love to the next level with the Pi-lomar Miniature Observatory.

Built with a Raspberry Pi 4, a RPi Hi Quality camera, and a Pimoroni Tiny2040, this tiny observatory does a solid job of letting you observe the night sky from the comfort of your sofa (some assembly required). The current version of Pi-lomar uses a 16mm ‘telephoto’ lens and the built-in camera libraries from Raspbian Buster. This gives a field of view of approximately 21 degrees of the sky.

While small for an observatory, there are still 4 spools of 3D printing filament in the five different assemblies: the Foundation, the Platform, the Tower, the Gearboxes and the Dome. Two NEMA 17 motors are directed by the Tiny2040 to keep the motion smoother than if the RPi 4 was running them directly. The observatory isn’t waterproof, so if you make your own, don’t leave it out in the rain.

If you’re curious how we might combat the growing spectre of light pollution to better our nighttime observations, check out how blinking can help. And if you want to build a (much) larger telescope, how about using the Sun as a gravitational lens?

Continue reading “Pi-lomar Puts An Observatory In Your Hands”

An observatory atop a hill

The Ultimate US Astronomy Roadtrip

Have 73 hours to kill and fancy a 4,609-mile road trip? Then you can check out some of the best observatories in the US (although we would probably recommend taking a couple of weeks rather than cramming the trip into three days, so you can spend at least one night stargazing at each).

Matador Network compiled a list of what they call the top ten US observatories, and published the daunting map you see above. Even if your trip is plagued by cloudy skies, rest assured the destinations will still be worth a visit. From Arizona’s Lowell Observatory, where the evidence Edwin Hubble used to formulate the Big Bang Theory was collected, to the Green Bank National Radio Observatory in West Virginia, home of Earth’s largest fully-steerable radio telescope, each site has incredibly rich history.

All of the observatories are open to the public in some way or another, but some are only accessible a few days per month, so make sure you plan your trip carefully! You may even want to travel with your own homemade telescope, Game Boy astrphotography rig, or, if you’re really dedicated, portable radio telescope.

Continue reading “The Ultimate US Astronomy Roadtrip”