The Commodore 64 Gets An HDMI Upgrade

The Commodore 64 may remain the best selling computer of all time, but it has one major flaw. It doesn’t have HDMI! That makes it a total pain to use with modern displays. Thankfully, [Side Projects Lab] has whipped up an HDMI output board to solve this concerning oversight from the original designers.

The project was inspired by work by [Copper Dragon], who whipped up a nifty RGB output board. This device worked by reading the inputs to the C64’s VIC II graphics chip, which it then used to recreate a pixel-perfect video frames to then produce a quality analog video output. [Side Projects Lab] figured the same interception technique would be useful for producing a quality HDMI output.

The result was the HD-64. It sits inside the C64 in place of the original RF modulator. It uses an interleaver socket to capture digital signals going to the VIC II. It then feeds these signals to an emulated VIC II running inside an FPGA, which creates the pixel-perfect screen representation and synthesizes the proper digital HDMI output. Meanwhile, the analog audio output from the SID chip is captured from the RF modulator’s original header, and sent out via the HDMI output as well. The default output is super-sharp, but the device can be configured to allow scanlines and anti-aliasing if that’s more to your tastes.

If you want to hook your C64 up to a modern screen, this is going to be one of the tidiest and sharpest ways to do it. We’ve seen similar hacks for other platforms before, too. Video after the break.

Continue reading “The Commodore 64 Gets An HDMI Upgrade”

C64 on desk with NFC TeensyROM and game token

TeensyROM NFC Game Loading On The C64

When retro computing nostalgia meets modern wireless wizardry, you get a near-magical tap-to-load experience. It’ll turn your Commodore 64 into a console-like system, complete with physical game cards. Inspired by TapTo for MiSTer, this latest hack brings NFC magic to real hardware using the TeensyROM. It’s been out there for a while, but it might not have caught your attention as of yet. Developed by [Sensorium] and showcased by YouTuber [StatMat], this project is a tactile, techie love letter to the past.

At the heart of it is the TeensyROM cartridge, which – thanks to some clever firmware modding – now supports reading NFC tags. These are writable NTag215 cards storing the path to game files on the Teensy’s SD card. Tap a tag to the NFC reader, and the TeensyROM boots your game. No need to fumble with LOAD “*”,8,1. That’s not only cool, it’s convenient – especially for retro demo setups.

What truly sets this apart is the reintroduction of physical tokens. Each game lives on its own custom-designed card, styled after PC Engine HuCards or printed with holographic vinyl. It’s a tangible, collectible gimmick that echoes the golden days of floppies and cartridges – but with 2020s tech underneath. Watch it here.

Continue reading “TeensyROM NFC Game Loading On The C64”

LLM Ported To The C64, Kinda

“If there’s one thing the Commodore 64 is missing, it’s a large language model,” is a phrase nobody has uttered on this Earth. Yet, you could run one, if you so desired, thanks to [ytm] and the Llama2.c64 project!

[ytm] did the hard work of porting the Llama 2 model to the most popular computer ever made. Of course, as you might expect, the ancient 8-bit machine doesn’t really have the stones to run an LLM on its own. You will need one rather significant upgrade, in the form of 2 MB additional RAM via a C64 REU.

Now, don’t get ahead of things—this is no wide-ranging ChatGPT clone. It’s not going to do your homework, counsel you on your failed marriage, or solve the geopolitical crisis in your local region. Instead, you’re getting the 260 K tinystories model, which is a tad more limited. In [ytm]’s words… “Imagine prompting a 3-year-old child with the beginning of a story — they will continue it to the best of their vocabulary and abilities.”

It might not be supremely capable, but there’s something fun about seeing such a model talking back on an old-school C64 display. If you’ve been hacking away at your own C64 projects, don’t hesitate to let us know. We certainly can’t get enough of them!

Thanks to [ytm] for the tip!

Crossing Commodore Signal Cables On Purpose

On a Commodore 64, the computer is normally connected to a monitor with one composite video cable and to an audio device with a second, identical (although uniquely colored) cable. The signals passed through these cables are analog, each generated by a dedicated chip on the computer. Many C64 users may have accidentally swapped these cables when first setting up their machines, but [Matthias] wondered if this could be done purposefully — generating video with the audio hardware and vice versa.

Getting an audio signal from the video hardware on the Commodore is simple enough. The chips here operate at well over the needed frequency for even the best audio equipment, so it’s a relatively straightforward matter of generating an appropriate output wave. The audio hardware, on the other hand, is much less performative by comparison. The only component here capable of generating a fast enough signal to be understood by display hardware of the time is actually the volume register, although due to a filter on the chip the output is always going to be a bit blurred. But this setup is good enough to generate large text and some other features as well.

There are a few other constraints here as well, namely that loading the demos that [Matthias] has written takes so long that the audio can’t be paused while this happens and has to be bit-banged the entire time. It’s an in-depth project that shows mastery of the retro hardware, and for some other C64 demos take a look at this one which is written in just 256 bytes.

Continue reading “Crossing Commodore Signal Cables On Purpose”

A Scratch-Built Commodore 64, Turing Style

Building a Commodore 64 is among the easier projects for retrocomputing fans to tackle. That’s because the C64’s core chipset does most of the heavy lifting; source those and you’re probably 80% of the way there. But what if you can’t find those chips, or if you want more of a challenge than plugging and chugging? Are you out of luck?

Hardly. The video below from [DrMattRegan] is the first in a series on his scratch-built C64 that doesn’t use the core chipset, and it looks pretty promising. This video concentrates on building a replacement for the 6502 microprocessor — actually the 6510, but close enough — using just a couple of EPROMs, some SRAM chips, and a few standard logic chips to glue everything together. He uses the EPROMs as a “rulebook” that contains the code to emulate the 6502 — derived from his earlier Turing 6502 project — and the SRAM chips as a “notebook” for scratch memory and registers to make a Turing-complete random access machine.

[DrMatt] has made good progress so far, with the core 6502 CPU built on a PCB and able to run the Apple II version of Pac-Man as a benchmark. We’re looking forward to the rest of this series, but in the meantime, a look back at his VIC-less VIC-20 project might be informative.

Continue reading “A Scratch-Built Commodore 64, Turing Style”

Converting The C64 Mini Into A C64C

The C64 Mini is a beautiful and functional replica of the most popular computer ever made, except at 50% size and without a working keyboard. For maximum nostalgia, it was modeled after the brown breadbox C64 case which so characterized the model. However, [10p6] wanted to build a tiny C64C instead, so set about making a conversion happen.

The build is primarily about the case design. [10p6] created a nice 50% scale duplicate of the C64C, with an eye to making it work with the internals of the popular C64 Mini. The case was paired with a custom PETSCII keyboard PCB and keycaps designed by [Bleugh]. This was a key element, since it wouldn’t really feel like a functional C64C without a functional keyboard. The build also scored a bonus USB hub for more flexibility. For the best possible finish, the case, power button, and keycaps were all printed using a resin printer, which provides a more “production-like” result than FDM printers are capable of.

It’s funny how retro computers remain popular to this day, particularly amongst the hacker set. In contrast, we don’t see a whole lot of people trying to replicate Pentium II machines from the mid-1990s. If you do happen to have a crack at it, though, the tipsline is always open. Video after the break.

Continue reading “Converting The C64 Mini Into A C64C”

A Quarter And A Dime Will Get You A Commodore 64 Softmodem

Back in the 1980s, a viable modem cost hundreds of dollars. Even in the 1990s, you were looking at spending a a Benjamin or two to get computer squawking down the phone lines. According to [Cameron Kaiser], though, it’s possible to whip up a softmodem using a Commodore 64 for much cheaper than that. How much? Just 35 cents, we’re told!

The inspiration was simple—Rockwell apparently used to build modems using the 6502. The Commodore 64 has a 6502 inside, pretty much, so surely it could be a softmodem, right? Indeed, one [John Iannetta] had done this in a one-way form in the 1980s, using the Commodore 64’s SID audio chip to output data in sound form. In 1998, he espoused the 35-cent modem—basically, the price of buying an RCA jack to hook up a phone line to your Commodore 64.

As [Cameron] found out, the concept still works today, as does [John’s] code, but it’s more like 68 cents in 2025 dollars. With the right bits and pieces, and a little code, you can have your C64 modulating data into sound at rates of 300 baud.

It’s hacky, slow, and there’s no real way to receive—the C64 just doesn’t have the chops to demodulate these kinds of signals on its own. You also shouldn’t use it on a real phone line if you don’t want to damage your C64. Still, it’s a wonderful bit of hackery, and it’s fun to see how well it works. We’ve seen some other great Commodore 64 modem projects before, like the ever-useful RetroModem. Meanwhile, if you’ve got your own communication hacks for the computers of yesteryear, don’t hesitate to let us know!