Recreating A Popular Faux-Nixie Clock

There’s a good chance you’ve seen “Nixie clocks” on the Internet that replace the classic cold cathode tubes with similarly sized LCD panels. The hook is that the LCDs can show pictures and animations of Nixie tubes — or pretty much anything else for that matter — to recreate the look of the real thing, while being far cheaper and easier to produce. It’s a hack for sure, and that’s the way we like it.

[Trung Tran] liked the idea, but didn’t just want to buy a turn-key clock. So he’s decided to build his own version based on the ESP32-S3. The WiFi-enabled microcontroller syncs up to the latest time via NTP, then uses a PCF8563 real-time clock (RTC) module to keep from drifting too far off the mark. The six displays, which plug into the custom PCB backplane, can then show the appropriate digits for the time. Since they’re showing image files, you can use any sort of font or style you wish. Or you could show something else entirely — the demo video below shows off each panel running the Matrix “digital rain” effect.

Continue reading “Recreating A Popular Faux-Nixie Clock”

Globe-Shaped World Clock Is A 3D-Printed Mechanical Marvel

Time zones are a complicated but necessary evil. Humans like the numbers on the clock to vaguely match up with what the sun is doing in the sky outside. To that end, different places in the world keep different time. If you want to keep track of them in a very pretty fashion, you might consider building a fancy and beautiful World Clock like [Karikuri] did. 

The design is based around a globe motif, mimicking the world itself. Only, on the surface of the globe, there are clock faces instead of individual countries. Each clock runs to its own time, directed by a complicated assemblage of 3D-printed gears. Mechanical drive is sent to the globe from a power base, which itself carries a mechanical seven-segment display. This too can display the time for different regions by using the controls below. It’s also useful for setting the clock to the correct time.

It’s a little difficult to follow the build if you don’t speak Japanese. However, quality subtitles are available in English if you choose to enable them.

We’ve seen [Karikuri’s] work before. We’ve also featured a great many world clocks over the years, including this particularly beautiful example that tracks night and day. Just don’t expect it to keep track of moon time. Video after the break.

Continue reading “Globe-Shaped World Clock Is A 3D-Printed Mechanical Marvel”

A Lenticular Clock Spells Out The Hours

So many are the clock projects which cross the Hackaday threshold, that it’s very rare indeed to see something that hasn’t already been done. We think we’ve not seen a lenticular clock before though, and we’re thus impressed by this one produced by [Moritz Sivers].

You may well be familiar with lenticular images from toys and novelties, an animation is sliced into lines and placed behind an array of multi-faceted linear lenses. It gives the effect of movement as from different viewing angles a different frame of the animation is perceived. In this clock the animation is replaced by the clock digits, and by rotating the whole with a servo driven by an ESP8266 microcontroller it can display different digits to the viewer. The write-up and the video below are of value both for the clock itself and the description of how these animations are produced. The clock itself doesn’t sacrifice usability for all its novelty, and we can see this technique might find a place in other projects requiring custom displays.

The lenticular lenses used here are off the shelf, but if you are of an adventurous mind, you could try printing some of your own.

Continue reading “A Lenticular Clock Spells Out The Hours”

Single-Stepping The 6502 Processor

Although marketing folk and laypeople may credit [Steve Jobs] as the man behind the success of Apple, those in the tech world know the real truth that without [Steve Wozniak] nothing would have ever gotten off the ground during the early days of the computer company. As an exhibit of his deep knowledge of the machines he was building, take a look at this recreation of a circuit by [Anders] which allows the 6502 processor to step through instructions one at a time, originally designed by [Woz] himself, even though there are still myths floating around the Internet that this type of circuit can’t work.

Like a lot of Internet myths, though, there’s a kernel of truth at the middle. The original 6502 from the mid-70s had dynamic registers, meaning they would lose their values if the chip was run below a critical clock speed. Since single-stepping the processor is much lower than this speed, it seems logical that this might corrupt the data in the registers. But if the clock is maintained to the registers the processor can be halted after each instruction, allowing even the original 6502 to go through its instructions one at a time.

[Anders]’s project sets up this circuit originally laid out by [Steve Wozniak] but updates it a bit for the modern times. Since the technology of the era would have been TTL, modern CMOS logic requires pull-up resistors to keep any inputs from floating. The key design of the original circuit is a set of flip-flops which latch the information on the data bus, and a switch that can be pressed to let the processor grab its next instruction, as well as a set of LEDs that allow the user to see the value on the data bus directly.

Of course, a computer processor of this era would be at a major handicap without a way to debug code that it was running, so there are even dedicated pins that allow this functionality to occur. Perhaps the Internet myth is a bit overblown for that reason alone, but [Anders] is no stranger to the 6502 and has developed many other projects that demonstrate his mastery of the platform.

Continue reading “Single-Stepping The 6502 Processor”

Iron Man Arc Reactor Clock Is A Stylish Piece

Iron Man was the film that kicked off the Marvel craze, and is widely regarded to be better than a lot of the movies that followed. If you’re a big fan of the OG, you’re probably already drowning in Iron Man helmets and arc reactor doo-dads, but here’s one more for you. After all, you probably don’t have an arc reactor clock yet.

The build comes to us from [jerome95]. It starts with an off-the-shelf ring of addressable LEDs, which serves as the basic defining dimension for the project. The ring gets a 3D printed support structure and some non-functional copper coils to complete the basic “arc reactor” look. Inside the center sits a small 7-segment display which displays the time under the command of an ESP32. It uses a network time server so it’s always on the dot.  Meanwhile, if you’re not a fan of the 7-segment version, you can always try the OLED variant of the build instead.

It’s not a complicated build; that could have been easily achieved, though. The builder could have displayed the time by making the LEDs flash different colors, instead of using a 7-segment display. However, that would have made a far more confounding clock. As it is, this design would make an excellent gift for any Marvel fan. Particularly those that acknowledge the supremacy of the film that started it all.

Continue reading “Iron Man Arc Reactor Clock Is A Stylish Piece”

Intentionally Overly-Complex Clock Is Off To A Good Start

[Kelton] from Build Some Stuff decided to create a clock that not only had kinetic elements, but a healthy dose of Rube Goldberg inspiration. The result is a work in progress, but one that looks awfully promising.

The main elements of the design are rotating pieces that indicate the hours and minutes, but each hour is advanced solely by the satisfying physical culmination of multiple interacting systems. Those systems also completely reset themselves every hour.

Each hour, a marble run kicks off a short chain reaction that culminates in advancing the hour.

At the top of the hour, a marble starts down a track and eventually tips over a series of hinged “dominoes”, which culminate in triggering a spring-loaded ratchet that advances the hour. The marble then gets carried back to the top of the device, ready for next time. Meanwhile, the domino slats and spring-loaded ratchets all get reset by a pulley system.

There’s still some work to do in mounting the motor, pulley system, and marble run. Also, a few bugs have surfaced, like a slight overshoot in the hour display. All par for the course for a device with such a large number of moving parts, we suppose.

[Kelton] has a pretty good sense how it will all work in the end, and it looks promising. We can’t wait to see it in its final form, but the tour of clock so far is pretty neat. Check it out in the video, embedded just under the page break.

As for the clock’s inspiration, Rube Goldberg’s cultural impact is hard to overstate and our own Kristina Panos has an excellent article about the man that might just teach you something you didn’t know.

Continue reading “Intentionally Overly-Complex Clock Is Off To A Good Start”

Using The Moiré Effect For Unique Clock Face

If you’ve ever seen artifacts on a digital picture of a computer monitor, or noticed an unsettling shifting pattern on a TV displaying someone’s clothes which have stripes, you’ve seen what’s called a Moiré pattern where slight differences in striping of two layers create an emergent pattern. They’re not always minor annoyances though; in fact they can be put to use in all kinds of areas from art to anti-counterfeiting measures. [Moritz] decided to put a few together to build one of the more unique clock displays we’ve seen.

The clock itself is made of four separate Moiré patterns. The first displays the hours with a stretching pattern, the second and third display the minutes with a circular pattern, and the seconds are displayed with a a spiral type. The “hands” for the clock are 3D printed with being driven by separate stepper motors with hall effect sensors for calibration so that the precise orientation of the patterns can be made. A pair of Arduinos control the clock with the high-accuracy DS3231 module keeping track of time, and [Moritz] built a light box to house the electronics and provide diffuse illumination to the display.

Moiré patterns can be used for a number of other interesting use cases we’ve seen throughout the years as well. A while back we saw one that helps ships navigate without active animations or moving parts and on a much smaller scale they can also be used for extremely precise calipers.

Continue reading “Using The Moiré Effect For Unique Clock Face”