An All-In-One Conference Video Streaming Box

When running a hacker camp or other event, one of the many challenges faced by the organisers concerns the production and distribution of event videos. As the talks are recorded they must be put online, and with a load of talks to be processed it quickly becomes impractical to upload them one by one through a web interface such as that provided by YouTube. At the BornHack 2019 hacker camp in Denmark they were using a particularly well-integrated unit to do the video uploading in real time, and its creator [Mikkel Mikjær Christensen]  was good enough to share the video we’ve put below the break, a talk he gave about it at The Camp 2017, a Danish open source software camp.

It takes the viewer through the evolution over several years, from simple camcorders with integrated microphones and post-event processing, through a first-generation system with a laptop and rack-mount monitors, and into a final system in a rugged portable case with a significantly powerful laptop running OBS with a hardware MPEG encoder. Careful choice of power supplies and the use of good quality wireless microphones now give instantaneous video streaming to events such as BornHack without the need for extensive infrastructure.

If you were wondering where you might have heard that name before, [Mikkel] is the [Mike] from the Retrocomputing with Mike YouTube channel. It’s being honest to say that more of our conversation was about retrocomputers than the video box.

Continue reading “An All-In-One Conference Video Streaming Box”

Hackaday Links Column Banner

Hackaday Links: August 4, 2019

Is the hacking community facing a HOPEless future? It may well be, if this report from 2600 Magazine is any indication. The biennial “Hackers On Planet Earth” conference is in serious financial jeopardy after the venue that’s hosted it for years, the Hotel Pennsylvania in Manhattan, announced a three-fold increase in price. Organizers are scrambling to save the conference and they’re asking for the community’s help in brainstorming solutions. Hackaday was at HOPE XI in 2016 and HOPE XII in 2018; let’s HOPE we get to see everyone again in 2020.

If you’ve ever been curious about how a 1970s PROM chip worked, Ken Shirriff has you covered. Or uncovered, as he popped the top off a ceramic MMI 5300 DIP to look at the die within. Closeups of the somewhat cockeyed die reveal its secrets – 1,024 tiny fusible links. Programming was a matter of overloading a particular fuse, turning a 1 into a 0 permanently. It’s a fascinating look at how it used to be done, with Ken’s usual attention to detail in the documentation department.

We had a great Hack Chat this week with Mihir Shah from Royal Circuits. Royal is one of the few quick-turn PCB fabs in the USA, and they specialize in lightning-fast turnaround on bare PCBs and assembled boards. He told us all about this fascinating business, and dropped a link to a side project of his. Called DebuggAR, it’s an augmented reality app that runs on a smartphone and overlays component locations, signal traces, pinouts, and more right over a live image of your board. He’s got a beta going now for iPhone users and would love feedback, so check it out.

With all the cool things you can do with LoRa radios, it’s no wonder that wireless hobbyists have taken to pushing the limits on what the technology can do. The world record distance for a LoRa link was an astonishing 702 km (436 miles). That stood for two years until it was topped, twice in the same day. On July 13th, the record was pushed to 741 km, and a mere five hours later to 766 km. All on a scant 25 mW of power.

Linux distro Manjaro made an unconventional choice regarding which office suite to include, and it’s making some users unhappy. It appears that they’ve dumped LibreOffice from the base install, opting instead to include the closed-source FreeOffice. Worse, FreeOffice doesn’t have support for saving .doc and OpenDocument files; potentially leaving LibreOffice users stranded. Paying for an upgrade to SoftMaker’s Office product can fix that, but that’s hardly free-as-in-beer free. It’s kind of like saying the beer is free, but the mug is an upgrade. UPDATE: It looks like the Manjaro team heard all the feedback and are working on a selector so you can install the office suite of your choice.

Tragic news out of New Hampshire, as amateur radio operator Joe Areyzaga (K1JGA) was killed while trying to dismantle an antenna tower. Local news has coverage with no substantial details, however the hams over on r/amateurradio seem to have the inside line on the cause. It appears the legs of the tower had filled with water over the years, rusting them from the inside out. The tower likely appeared solid to Joe and his friend Mike Rancourt (K1EEE) as they started to climb, but the tower buckled at the weak point and collapsed. K1EEE remains in critical condition after the 40′ (12 m) fall, but K1JGA is now a silent key. The tragedy serves as a reminder to everyone who works on towers to take nothing for granted before starting to climb.

And finally, just for fun, feast your eyes on this movie of the ESA’s Rosetta spacecraft as is makes its flyby of comet 67P/Churyumov–Gerasimenko. It’s stitched together from thousands of images and really makes 67P look like a place, not just a streak of light in the night sky.

First WOPR Summit Finds The Winning Move

At the climax of 1983’s “WarGames”, the War Operation Plan Response (WOPR) computer famously opines “The only winning move is not to play” when presented with a barrage of no-win scenarios depicting global thermonuclear war. While the stakes aren’t quite as high when it comes to putting on a brand new hacker convention, there’s certainly enough pitfalls that most of us would take WOPR’s advice and never even try. But for those who attended the inaugural WOPR Summit in Atlantic City, it was clear that not only did the team behind it have the tenacity to play the game, but that they managed to prove their supercomputer namesake wrong.

That’s not to say there isn’t room for improvement going forward, but it was hard not to be impressed by such a strong initial showing. The WOPR Summit organizers not only had to contend with the myriad of things that could go wrong, but they had to deal with what actually did go wrong; such as a sizable storm hitting the New Jersey coast just as the event got rolling. Yet from the attendees perspective the weekend-long event went off without a hitch, and everyone I spoke to was excited for what the future holds for this brand-new East Coast event.

It’s never easy to capture 20+ hours worth of talks, workshops, and hands-on projects into a few articles, but we do our best for the good readers of Hackaday. Below you’ll find just a few of the highlights from the first-ever WOPR Summit, but it’s nothing quite like attending one of these events in person. This far out we don’t know when and where the next WOPR Summit will take place, but you can be sure that Hackaday will be there; and so should you.

Continue reading “First WOPR Summit Finds The Winning Move”

Electromagnetic Field 2018: Event Review

This summer’s Electromagnetic Field hacker camp in a field in western England gave many of the European side of our community their big fix of cool stuff for the year.

Some lucky individuals can spend the year as perpetual travelers, landing in a new country every week or so for the latest in the global round of camps. For the rest of us it is likely that there will be one main event each year that is the highlight, your annual fill of all that our global community has to offer. For many Europeans the main event was the biennial British event, Electromagnetic Field. From a modest start in 2012 this has rapidly become a major spectacle, one of the ones to include in your calendar, delivered both for our community and by our community.

Continue reading “Electromagnetic Field 2018: Event Review”

Join Hackaday And Tindie This Thursday At Open Hardware Summit

This weekend Hackaday and Tindie will be trekking out to beautiful Cambridge, Massachusetts, for the greatest congregation of Open Source hardware enthusiasts on the planet. This is the Open Hardware Summit. It’s every year, most of the time in different places, and this year it’s back in the hallowed halls of MIT. Somebody put a car on the roof before we do.

The schedule for this year’s Open Hardware Summit is stuffed to the gills with interesting presentations sure to satiate every hardware nerd. We’ve got talks on Open Source Software Defined Radio, and the people behind the Hackaday Prize entry Programmable Air will be there talking about controlling soft robotics.

Really, though, this is an extravaganza filled with the people who make things, and here you’re not going to find a better crew. At every Open Hardware Summit we’ve attended, you can’t turn your head without locking eyes with someone with an interesting story of hardware heroics to tell.

This is, without a doubt, the greatest gathering of the people behind all your favorite hardware designs. The greats of 3D printing will be there, we’re going to get an update on the now two-year-old Open Hardware Certification program (hint: great success!), and there’s an awesome badge, as always. There will be some extra-special Hackaday swag in the goodie bags, sure to be a collectable. We’re going to be there with boots on the ground, but it’s still not too late to get tickets if you’re in the Boston area.

Competitive Soldering Is Now A Thing

At Hackaday, we’re constantly impressed by the skill and technique that goes into soldering up some homebrew creations. We’re not just talking about hand-soldering 80-pin QFNs without a stencil, either: there are people building charlieplexed LED arrays out of bare copper wire, and using Kynar wire for mechanical stability. There are some very, very talented people out there, and they all work in the medium of wire, heat, and flux.

At this year’s DEF CON, we opened the floodgates to competitive soldering. Along with [Bunny] from Hardware Hacking Village and the many volunteers from the HHV and Soldering Skills Village, dozens competed to solder up a tiny kit full of LEDs and microscopic resistors.

The kit in question was an SMD Challenge Kit put together my MakersBox, and consisted of a small PCB, an SOIC-8 ATtiny, and a LED and resistor for 1206, 0805, 0603, 0402, and 0201 sizes. The contest is done in rounds. Six challengers compete at a time, and everyone is given 35 minutes to complete the kit.

We’ve seen — and participated in — soldering challenges before, and each one has a slightly unique twist to make it that much more interesting. For example, at this summer’s Toorcamp, the soldering challenge was to simply drink a beer before moving to the next size of parts. You would solder the 1206 LED and resistor sober, drink a beer, solder the 0805, drink a beer, and keep plugging away until you get to the 01005 parts. Yes, people were able to do it.

Of course, being DEF CON and all, we were trying to be a bit more formal, and drinking before noon is uncouth. The rules for this Soldering Challenge award points on five categories: the total time taken, if the components are actually soldered down, a ‘functionality’ test, the orientation of the parts, and the quality of the solder joints.

The winners of the soldering challenge, at the Hackaday Breakfast Meetup at DEF CON 26

So, with those rules in place, who won the Soldering Challenge at this year’s DEF CON? Out of a total 25 points, the top scorers are:

  • [True] – 23 pts
  • [Rushan] – 19 pts
  • [Ryan] – 18 pts
  • [Beardbyte] – 18 pts
  • [Casey] – 18 pts
  • [Bob] – 18 pts
  • [Nick] – 18 pts
  • [JEGEVA] – 18 pts

The Soldering Challenge had an incredible turnout, and the entire Soldering Skills Village was packed to the gills with folks eager to pick up an iron. The results were phenomenal!

We’d like to extend a note of thanks to [Bunny], the Hardware Hacking Village, the Soldering Skills Village, and MakersBox for making this happening. It was truly a magical experience, and now that competitive soldering is a thing, we’re going to be doing this a few more times. How do you think this could be improved? Leave a note in the comments.

VCF West: Adding A Front Panel To The 6502

When you think about vintage computers from the 1970s, the first thing that should spring to mind are front panels loaded up with switches, LEDs, and if you’re really lucky, a lock with a key. Across all families of CPUs from the ’70s, you’ll find front panel setups for Z80s and 8080s, but strangely not the 6502. That’s not to say blinkenlights and panel switches for 6502-based computers didn’t exist, but they were astonishingly rare.

If something hasn’t been done, that means someone has to do it. [Alexander Pierson] built The Cactus, a  6502-based computer that can be controlled entirely through toggle switches and LEDs.

If you’re wondering why something like this hasn’t been built before, you only have to look at the circuitry of the 6502 CPU. The first versions of this chip were built with an NMOS process, and these first chips included bugs, undefined behavior, and could not be run with a stopped clock signal. These problems were fixed with the next chip spin using a CMOS process (which introduced new bugs), but the CMOS version of the 6502 would retain the contents of its registers with a stopped clock signal.

The specs for the Cactus computer are what you would expect from a homebrew 6502 system. The chip is a WDC 65C02S running at 1MHz, there’s 32k of RAM and a 16k EPROM, dual 6551s give serial access at various baud rates, and there are 16 bits of parallel I/O from a 65C22 VIA. The ROM is loaded up with OSI Basic. The real trick here is the front panel, though. Sixteen toggle switches allow the front panel operator to toggle through the entire address space, and eight flip switches can set any bit in the computer. Other controls include Run, Halt, Step, Examine, and Deposit, as you would expect with any front panel computer.

It’s a fantastic piece of work which I missed seeing at VCF East so I’m really glad [Alexander] made the trip between coasts. Cactus is truly something that hasn’t been done before. Not because it’s impossible, but simply because the state of the art technology from when the 6502 was new didn’t allow it. Now we have the chips, and the only limitation is finding someone willing to put in the work.