Popping The Top Of A Ceramic IC

If you’ve ever wanted to open up an IC to see what’s inside it, you have a few options. The ceramic packages with a metal lid will succumb to a hobby knife. That’s easy. The common epoxy packages are harder, and usually require a mix of mechanical milling and the use of an acid (like fuming nitric, for example). [Robert Baruch] wanted to open a fully ceramic package so he used the “cooler” part of a MAP gas torch. If you like seeing things get hot in an open flame, you might enjoy the video below.

Spoiler alert: [Robert] found out the hard way that dropping the hot part isn’t a great idea. Also, we are not sure what the heat does if you want to do more than just inspect the die. It would be interesting to measure a junction on the die during the process to see how much heat actually goes to the device.

Continue reading “Popping The Top Of A Ceramic IC”

Project 54/74 Maps Out Logic ICs

Integrated circuits are a fundamental part of almost all modern electronics, yet they closely resemble the proverbial “black box” – we may understand the inputs and outputs, but how many of us truly understand what goes on inside? Over the years, the process of decapping ICs has become popular – the removal of the package to enable peeping eyes to glimpse the mysteries inside. It’s an art that requires mastery of chemistry, microscopy and photography on top of the usual physics skills needed to understand electronics. Done properly, it allows an astute mind to reverse engineer the workings of the silicon inside.

There are many out there publishing images of chips they’ve decapped, but [Robert Baruch] wants more. Namely, [Robert] seeks to create a database of die images of all 5400 and 7400 series logic chips – the eponymous Project 54/74.

These chips are the basic building blocks of digital logic – NAND gates, inverters, shift registers, decade counters and more. You can build a CPU with this stuff. These days, you may not be using these chips as often in a production context, but those of you with EE degrees will likely have toyed around a few of these in your early logic classes.

There’s only a handful of images up so far, but they’re of excellent quality, and they’re also annotated. This is a great aid if you’re trying to get to grips with the vagaries of chip design. [Robert] is putting in the hard yards to image as many variations of every chip as possible. There’s also the possibility of comparing the same chip for differences between manufacturers. We particularly like this project, as all too often manufacturing techniques and technologies are lost and forgotten as the march of progress continues on. It looks like it’s going to become a great resource for those looking to learn more about integrated circuit design and manufacture!

Rebonding An IC To Save Tatakae! Big Fighter

Preserving old arcade games is a niche pastime that can involve some pretty serious hacking skills. If the story here were just that someone pulled the chip from a game, took it apart, and figured out the ROM contents, that’d be pretty good. But the real story is way stranger than that.

Apparently, a bunch of devices were sent to a lab to be reverse engineered and were somehow lost. Nearly ten years later, the devices reappeared, and another group has taken the initiative to recover their contents. The chip in question was part of a 1989 arcade game called Tatakae! Big Fighter, and it had been hacked. Literally hacked. Like with an ax or something worse.

You can read the story of how the contents were recovered. You shouldn’t try this at home without a vent hood and other safety gear. However, they did rebond wires to the device using a clever trick and no exotic equipment (assuming you have some fairly good optical microscopes and a microprobe on a lens positioner).

Continue reading “Rebonding An IC To Save Tatakae! Big Fighter”

8008 Exposed

[Ken Shirriff] is no stranger to Hackaday. His latest blog post is just the kind of thing we expect from him: a tear down of the venerable 8008 CPU. We suspect [Ken’s] earlier post on early CPUs pointed out the lack of a good 8008 die photo. Of course, he wasn’t satisfied to just snap the picture. He also does an analysis of the different constructs on the die.

Ever wonder why the 8008 ALU is laid out in a triangle shape? In all fairness, you probably haven’t, but you might after you look at the photomicrograph of the die. [Ken] explains why.

Continue reading “8008 Exposed”

Decapsulation Reveals Fake Chips

A while back, [heypete] needed to get a GPS timing receiver talking to a Raspberry Pi. The receiver only spoke RS-232, and the Pi is TTL level serial. [Pete] picked up a few RS-232 to TTL conversion boards from an online vendor in China. These boards were supposedly based on the Max3232, a wonderchip that converts the TTL serial to the positive and negative voltages of RS-232 serial. The converters worked fine for a few weeks, before failing, passing a bunch of current, and overheating.

On Mouser and Digikey, the Max3232 costs about $1.80 in quantity one, and shipping is extra. You can pick up a ‘Max3232 converter board’ from the usual online marketplaces for seventy five cents with free shipping. Of course the Chinese version is fake. [Pete] had some nitric acid, and decided to compare the die of the real and fake Max3232s.

After desoldering two fake chips from their respective converter boards, and acquiring a legitimate chip straight from Maxim, [Pete] took a look at the chips under the microscope. The laser markings on the fakes are inconsistent, but there was something interesting to be found in the date code markings. It took two to four weeks for the fake chips to be etched with a date code, assembled into a converter board, shipped across the planet, put into [Pete]’s project, run for a little bit, and fail spectacularly. That’s an astonishing display of manufacturing, logistics, and shipping times. Update: The date codes on the fakes had 2013 laser etched on the plastic package, and 2009 on the die. The real chips had a date code just a few weeks before [Pete] decapped them — a remarkably short life but they gave in to a good cause.

Following the Zeptobars and CCC (PDF) guides to dropping acid, [Pete] turned his problem into solution and took a look at the dies under a microscope. The legitimate die was significantly larger, and the fake dies were identical. The official die used gold bond wires, but the fake ones didn’t.

Unfortunately, [Pete] isn’t an expert in VLSI, chip design, failure analysis, or making semiconductors out of sand. Anything that should be obvious to the layman is not, and [Pete] has no idea why these chips would work for a week, then overheat and fail. If anyone has an idea, hit [Pete] up and drop a note in the comments.

Russian Decapping Madness

It all started off innocently enough. [mretro] was curious about what was inside a sealed metal box, took a hacksaw to it and posted photographs up on the Interwebs. Over one hundred forum pages and several years later, the thread called (at least in Google Translate) “dissecting room” continues to amaze.

h_1466184174_4168461_2f4afb42b7If you like die shots, decaps, or teardowns of oddball Russian parts, this is like drinking from a firehose. You can of course translate the website, but it’s more fun to open it up in Russian and have a guess at what everything is before peeking. (Hint: don’t look at the part numbers. NE555 is apparently “NE555” in Russian.)

From a brief survey, a lot of these seem to be radio parts, and a lot of it is retro or obsolete. Forum user [lalka] seems to have opened up one of every possible Russian oscillator circuit. The website loads unfortunately slowly, at least where we are, but bear in mind that it’s got a lot of images. And if your fingers tire of clicking, note that the URL ends with the forum page number. It’d be a snap to web-scrape the whole darn thing overnight.

We love teardowns and chip shots, of old gear and of new. So when you think you’ve got a fake part, or if you need to gain access to stuff under that epoxy blob for whatever reason, no matter how embarrassing, bring along a camera and let us know!

Thanks [cfavreau] for the great tip!

Dirt Cheap Dirty Decapping

Those tiny black rectangles of epoxy aren’t black boxes anymore. Decapsulating ICs is becoming somewhat common, and if you’re reverse engineering a chip-on-board epoxy blob, or just figuring out if the chip you bought is the chip you wanted, you’ll need to drop some acid. Usually this means finding someone with the knowhow to decap a chip, or having enough confidence in yourself to mess around with fuming nitric acid. Now Dangerous Prototypes has a better solution – Dirty Decapsulation. Send your chip to Dangerous Prototypes, and they’ll melt away the epoxy and take a few pictures of the die hidden inside your chip.

dirty-decappingDirty Decapsulation is Dangerous Prototype’s addition to their array of hacker services including cheap, crappy PCBs and SLA printing service. Dirty Decapsulation follows in the tradition of these other services; it’s not the best you can possibly get, but you’re not paying thousands of dollars for the job.

Right now, Dirty Decapsulation will take a chip, strip off the epoxy, and take a few pictures. These pictures are stitched together, producing a medium quality image of the die. No, you can’t see individual gates, and you can’t see different layers of metal and silicon. If you want that, you’ll need some nitric or a few thousand dollars. Dirty Decapsulation is just to verify the chip’s identity and give a rough idea of the layout of the die.