Centaur Costume Features Drinks Cooler And Walking Legs

Let’s say it’s Halloween, and you’re a big fan of centaurs. At the same time, you want to be easily able to store your drinks on ice and always have them to hand. Well, this costume from [David Yakos] might be the one for you.

Construction is simple. Two small bike wheels were fitted to the cooler using bits of a broken chair, and the other end of the cooler is simply fitted around the wearer’s waist with a strap.

The rear centaur legs are carved out of foam board, and attached to the rear wheels with a bolt through the spokes. The top of each leg is attached to a rod, which slides into the frame holding the wheels on. It keeps the top of the legs roughly where they should be but lets them move, allowing the legs to “walk” as the wheels rotate.

It’s not exactly an advanced build, but we simply love the idea of costumes that keep drinks cold all night. Hiding the cooler as a centaur’s body is really just the icing on the cake. Of course, if you’ve got your own costume design for keeping your beverages chilled and frosty, do let us know. Video after the break.

Continue reading “Centaur Costume Features Drinks Cooler And Walking Legs”

inside shot of a refrigerator with water bulk tank and seltzer pump

Continuous Seltzer Deployment System Solves Our Bubbly-Water Sourcing Problems

Seltzer water – that bubbly, carbonated water that disappoints sugar-craving children everywhere – has experienced a steady rise in popularity over the past few years. This is perhaps partly fueled by the availability of countertop carbonators such as the SodaStream.

Not satisfied with the tedious and pedestrian process of manually carbonating individual bottles of water, [piyoman] has instead built a tidy little tap of unlimited cold, filtered seltzer. It’s no easy gag. The build uses a commercial carbonator pump, reverse osmosis water filter, bulk tank, and a standard CO2 cylinder to create a constant source of carbonated water. Most of this setup is stuffed into a dorm-sized fridge (tetris-style) and topped with a fancy beer faucet to dispense the resulting bubblewater.

At roughly $800 for the documented system, you need to have a great reason to build your own. But [piyoman] provides detailed instructions, a parts list, and suggestions for cost savings and future improvements if you do take on a system like this for your seltzer needs.

Cheaper Carbonation Options

While looking at how DIY carbonation has been done in the past we found [Richard Kinch’s] Carbonating at Home with Improvised Equipment and Soda Fountains page which dives into many other options. His site – a wonderful, dense demonstration of the beauty of “web 1.0” – walks through the basics of carbonated water, discusses CO2 tanks and gauges, and shows how to build a simple carbonation cap for making seltzer in standard PET soda bottles.

Beautiful Pi-Powered Cocktail Machine

Science fiction has long had the idea that a good drink should just appear from a sliding panel in a wall. Bartending is to be the preserve of robots and AIs – manual control is for the past, and in an effort to continue our progress to towards that sci-fi future, Reddit user [HighwingZ] has built a beautiful machine that mixes and serves drinks.

Instead of a sliding wall panel, [HighwingZ] has built a hexagonal container. Five of the six sides contain bottles to fill the drink with, the last panel contains the spigot and a spot for the glass. The machine works by weighing the liquid that gets poured into the glass using a load cell connected to a HX711 load cell amplifier. An aquarium pump is used to push air into whichever bottle has been selected via some magnetic valves which forces the liquid up its tube and into the glass. A simple touch screen UI is used so the user can select which drink and how much of it gets poured. All of this is connected to a Raspberry Pi to control it all.

The whole thing is built into a great looking wooden showcase with see-through sides, so you can see the bottles to be used to make the drinks. [HighwingZ] put the Python code that controls everything on github for anyone wanting to make their own. There are a few cocktail making hacks on the site, like this one, or this one if you need some inspiration.

Continue reading “Beautiful Pi-Powered Cocktail Machine”

Temperature Sensing Mug Means Never Burning Your Mouth Again

temp_sensing_mug

Some people tend to get awfully attached to their favorite mug. Like an old friend, the mug holds a special place in their hearts, and there’s a weird sadness when it finally gives up the ghost. Through the winter months [Ben’s] girlfriend is never without hers, and when it broke, he decided to give her a new one with some added functionality.

He built her a temperature sensing mug that uses a rather novel way of determining how hot or cold the contents are. Instead of using a thermistor to determine the drink’s temperature, he opted to use a simple diode since it is well known that a diode’s forward voltage varies with temperature. After determining the diode’s voltage range using hot and cold beverages, he hooked it up to the ADC of a PIC12F615 micro controller. The temperature is displayed via 10 LEDs, which are driven through a pair of 8-bit shift registers and buffers since his PIC did not have enough pins to control them on its own.

He had some PCBs made, and after a handful of setbacks got everything put together. He says the mug works pretty well, though the display changes a bit more slowly than he would like. He also mentions that if he builds a second version, he will be sure to select a different PIC that has enough I/O pins to do the job, as well as use a thermistor instead of a simple diode for sensing the temperature.

Continue reading to see a brief demo video [Ben] put together.

Continue reading “Temperature Sensing Mug Means Never Burning Your Mouth Again”