Fan Lets RC Car Drive On The Ceiling

Downforce is a major part of modern motorsport, keeping cars glued to the track at high speeds. However, for small radio control cars, adding a fan for a little suction can achieve even greater feats, as demonstrated by this build by [DD ElectroTech].

The build began as a simple two-motor, skid-steer RC car build with a fan for suction. Controlled by a smartphone app, a cheap Arduino board with an HC-05 Bluetooth module ran the show. However, when this was all assembled, the car was too heavy to climb walls or stick to the ceiling.

Thus, a weight-saving plan was in order. Wheels were swapped out for lighter 3D printed parts. The electronics saw significant re-engineering, too, with the multiple separate modules all condensed down into one single custom PCB. After a few other tweaks, the new lighter car was able to easily drive on the ceiling and even climb walls, albeit with some difficulty.

It’s a fun little build and a good demonstration of how easy it is to whip up cool projects with modern electronics and 3D printed parts. We’ve seen other printed fan car builds before, too, but did you know the concept was first trialed in real-world motorsport competition? Video after the break.

Continue reading “Fan Lets RC Car Drive On The Ceiling”

RC Car Gets Fan-Assisted Downforce To Slay Tesla’s 0-60 Times

Tesla have claimed that their upcoming new Roadster will post a sub-2 second 0-60mph time. While it’s backed up by little more than a shiny website at this stage, [Engineering After Hours] took the number as a target to beat with his RC fan car build. (Video, embedded below.)

We’ve seen an earlier prototype of this build before, with the first version generating enough downforce to successfully drive upside down. The new build has several modifications to maximise its lateral acceleration capabilities. The new build drives all four wheels, which are fitted with sticky tyres coated in traction compound for maximum grip. The main drive motor, along with the fan and skirt assemblies, are all mounted in the center of the car now to properly balance the aero loads across the axles and provide a stable weight distribution for fast launches.

The results are impressive, with the car posting a 0-60mph time of just 1.825 seconds. There’s likely still time left on the table, too, once the car can be tuned to launch harder off the line. We’d love to see a racing series of fan-equipped RC cars hit the track, too, given the amount of grip available with such hardware.

Continue reading “RC Car Gets Fan-Assisted Downforce To Slay Tesla’s 0-60 Times”

The Rise And Fall Of The Fan Car

The advent of aerodynamic wings in motorsport was one of the most dramatic changes in the mid-20th century. Suddenly, it was possible to generate more grip at speed outside of altering suspension setups and fitting grippier tyres. However, it was just the beginning, and engineers began to look at more advanced ways of generating downforce without the drag penalty incurred by fitting wings to a racecar.

Perhaps the ultimate expression of this was the fan car. Mechanically complex and arguably dangerous, the technology offered huge downforce with minimal drag. However, the fan car’s time in the spotlight was vanishingly brief, despite the promise inherent in the idea. Let’s take a look at the basic theory behind the fan car, how they worked in practice, and why we don’t see them on racetracks today. Continue reading “The Rise And Fall Of The Fan Car”

Driving Upside Down With An RC Fan Car

We’ve all seen those tiny little RC cars that can climb walls thanks to the suction generated with fans. Their principle is essentially the opposite to that of a hovercraft. [Engineering After Hours] wanted to build his own RC car that could do the same, driving upside down and generating huge amounts of grip.

The build is based on a Traxxas RC car, but heavily modified for the task. An undertray is crafted, with ducts feeding a pair of twin 50mm electric fans. A skirt is fitted around the edge of the undertray, helping create a seal to maximise the downforce generated. This skirt is the area of much engineering effort, as it must form a good seal with the ground, particularly over minor pertubations, without creating undue levels of friction. Suspension components correspondingly need to be beefed up to stop the car bottoming out with the huge downforce generated by the fan system.

After much experimentation, the kinks are worked out, and the car is able to drive upside down successfully. It generates far more downforce than earlier wing experiments from [Engineering After Hours], as expected – with a tradeoff of higher weight and complexity. With the plan to create an RC car capable of huge lateral acceleration, we can’t wait to see what comes next. Video after the break.

Continue reading “Driving Upside Down With An RC Fan Car”