Hackaday Links: January 17th, 2013

Free-formed VFD clock

links-free-formed-vfd-clock [James] doesn’t need a circuit board or even some protoboard to get the job done. He free-formed all the circuits for his VFD clock. Right now this is the only project hosted on his blog so click around to see how he got to this point.

DIY LED traffic light

links-diy-traffic-light

Here’s a scratch-build traffic light which [Jarle] uses to display information about his server. If you’re unable to find your own storm damaged original this is a pretty easy way to build one.

FPGA space attack game

links-classic-shooter-running-on-fpga

This game is running on an FPGA, but it’s not written in HDL. Instead, [Johan] wrote the game in C to run on a soft processor loaded on the gate array.

Hourglass entropy

links-hour-glass-entropy

This is a fascinating idea for generating random numbers. [Gijs] is shining a laser onto a light dependent transistor. The beam of the laser is broken by the falling sand of an hourglass. This technique could be use as an entropy source for random number generation.

GPS clock source for a digital timepiece

links-gps-clock

It seems like massive overkill, but you can’t beat the time accuracy of using a GPS module as a clock source. We don’t expect that [Jay] kept the clock in one piece after finishing the project. It’s just a good way to practice decoding the GPS data.

Raspi Astrophotography Board Also Does Everything Else

FPGA

A few years ago the folks at Astro Designs put together a board that took off-the-shelf CCD sensors from point and shoot cameras and turned them into respectable astrophotography sensors. Since then, the world has seen an explosion of Raspberry Pis, Arduinos, and other microcontroller platforms, making this the perfect time for a hardware revision.

Their PiXi-200, like their previous AstroCam board, is able to take image sensors out of cameras and turn them into telescope mounted cameras. That’s only one of its tricks, though: The PiXi-200 also has accelerometers, gyroscopes, enough UARTs to do just about anything, a four channel ADC and four channel DAC, two dozen GPIO pins, enough LEDs and buttons for any project, and a 200,000 gate FPGA. All this in a board that plugs directly into the GPIO pins on the Raspberry Pi just like an Arduino shield. Needless to say, there’s a lot you can do with this board.

Right now, the design is still in the prototype stage, but once everything is finalized the basic model of the board will sell for £30 GBP ($50 USD). The high-end “Model C” board, with all the bells and whistles, will sell for £45 GPB ($70 USD).

Ask Hackaday: We Might Have Some FPGAs To Hack

rear

[Chris] is an IT guy for a medical clinic up in Alaska, and until very recently the systems he monitored, fixed, and beat with a wrench included over 100 Pano Logic “Zero Client” thin clients. Pano Logic just went out of business and all support for these little boxes have been cut off, leaving [Chris] with a hundred or so very interesting pieces of hardware.

The idea behind these “zero clients” is the ideal of a thin client – take all the storage, processing, RAM, and other goodies and move them to a server. Pano Logic took this one step further than other thin clients, removing the CPU, memory, and basically everything you’d find in a thin client. What was left was a Spartan-6 FPGA, a few chips to drive the USB ports, a pair of HDMI chips, and a few DDR2 modules. Basically, [Chris] has about 150 FPGA dev boards just sitting in a storage room. The only thing that is needed is a bunch of software and an extreme amount of cleverness.

After opening one of these zero clients, [Chris] found a Spartan-6 FPGA right next to what he thinks is a 6-pin programming port. Along with the FPGA are a few other chips that would make any FPGA dev board a very neat tool:

We’re going to agree with [Chris] these Pano Logic zero clients show a lot of potential. If you’re up to the challenge of creating a very, very cheap FPGA dev board out of some discarded hardware, head on over to ebay or chat up your local IT guy.

UPDATE: Roll Your Own GPS Can Now Track Twice As Many Satellites

diy-gps-module

[Andrew Holme] wrote in to tell us about some work he’s done to improve his scratch-built GPS receiver. He figured out a way to use the same hardware but double the number of satellites it can track to a total of eight. When we looked at the original hardware about a year ago it was limited to monitoring just four satellites. That’s the bare minimum for calculating position data. This will not only help increase the accuracy, but remove the problems that would have been cause if just one satellite was dropped because of an obstruction or other issue.

His solution is based entirely on using the FPGA in a different way. He had taken up almost all of the gates available in the Xilinx Spartan 3 chip. Now he’s implemented a CPU on the chip and is able take some of the work off of the hardware gate design by running code on it. He also found and squashed a bug in how the data was processed. He says his original work wasn’t taking into account the rotation of the earth when determining position. All of these improvements put his accuracy at +/- five meters even when he’s not tracking all eight satellites!

Two Computer Vision Builds From Cornell

land

[Bruce Land], professor at Cornell, is a frequent submitter to our tip line. Usually he sends in a few links every semester from undergraduate electronics courses. Now the fall semester is finally over and it’s time to move on to the more ambitious master’s projects.

First up is a head-mounted eye tracker, [Anil Ram Viswanathan] and [Zelan Xiao] put together a lightweight and low-cost eye tracking project that will record where the user is looking.

The eye tracker hardware is made of two cameras mounted on a helmet. The first camera faces forward, looking at the same thing the user is. The second camera is directed towards the user’s eye. A series of algorithms detect the iris of the user’s eye and overlays the expected gaze position on the output of the first camera. Here’s the design report. PDF, natch.

Next up is a face tracking project implemented on an FPGA. This project started out as a software implementation of a face tracking algorithm in MATLAB. [Thu-Thao Nguyen] translated this MATLAB code to Verilog and eventually got her hardware running on an FPGA dev board. Another design report.

Having a face detection and tracking system running on an FPGA is extremely interesting; the FPGA makes face tracking a very low power and hopefully lower-cost solution, allowing it to be used in portable and consumer devices.

You can check out the videos for these projects after the break.

Continue reading “Two Computer Vision Builds From Cornell”

Breadboard Friendly FPGAs

Regular Hackaday readers will be familiar with all the cool things you can do with FPGAs; emulating old video game consoles, cracking encryption protocols, and DIY logic analyzers become relatively simple projects with even a modest FPGA dev board on your workbench. Many FPGA boards aren’t geared towards prototyping, though, and breadboard friendly devices are hard to come by. Here’s a pair of breadboardable FPGAs we’ve found while searching for some related hardware over the past few days

First up is the Mercury FPGA Module. Packaged in a DIP-64 format, the Mercury features a Spartan-3A FPGA with the equivalent of 200k logic gates. Elsewhere on the board is 512kB of RAM and 128kB of Flash storage. There are enough GPIO pins for nearly any project, but sadly only a 10-bit ADC – the same resolution you’d find in an AVR or PIC ‘micro.

Of course the Mercury isn’t the only breadboard-friendly FPGA dev board out there. There’s also the slightly more capable XuLA2 board powered by a Spartan-6 with 32 MB of RAM, 1MB of Flash. Unlike the Mercury, the XuLA2 can also fit in one of those ‘half-sized’ solderless breadboards.

Yes, it’s a different form factor than the commonly recommended Papilio One or the DE0. If you can suggest any other ‘beginners’ (i.e. doesn’t cost an arm and a leg) FPGA boards, leave a note in the comments and we’ll summarize them in another post.

Building A 100 MHz Frequency Counter

The great thing about building with gates is the crazy speeds you can achieve by using hardware directly (as opposed to working with simple microcontrollers). This 100 MHz frequency counter is a great example. [Michael] just finished building it using a Papilio board.

Of course we’re not talking about discreet chips here. The Papilio is an FPGA development board which means he is building with hardware gates, but that is still done by writing code. Above, the rig is measuring a 25 MHz being generated by a second FPGA board. Using the Papilio’s on board 32 MHz clock the device is capable of counting a frequency up to 100 MHz. You can see it measuring a 96.875  MHz signal in the video after the break. One interesting thing about that clip is that near the end he touches the crystal’s case with his finger and the Hertz really jump for a moment.

If the 8-digit display looks familiar that’s because [Michael] recently published a library to use it with an FPGA.

Continue reading “Building A 100 MHz Frequency Counter”