Rare Diode Threatens Coast Guard’s Arctic Ambitions

The United States Coast Guard heavy icebreaker Polar Star is literally a one-of-a-kind ship. After its sister Polar Sea was deactivated in 2010 it became the most powerful icebreaker in the fleet, and one of only two US icebreakers capable of operating in the treacherous polar regions. The vessel is critical to protecting America’s scientific and economic interests in the Arctic, but according to a recent article in Business Insider, the ship’s age and scarcity of spare parts is making an already difficult mission even harder.

In the article, Captain William Woityra specifically mentions that the ship’s diesel-electric propulsion system is running on borrowed time as the diodes used in its AC/DC rectifier are no longer manufactured. With none remaining in the Coast Guard’s inventory, the crew has had to turn to eBay to source as many spares as possible. But once their hoard runs out, Captain Woityra fears his ship will be dead in the water:

We’ve got a few dozen of these in a box on a shelf, when they’re gone, the ship will not be able to run anymore. It’s really kind of disconcerting … that this ship, and this operation, and the US’s icebreaking presence in the Arctic is reliant on a box of spare parts that … there are no more of.”

The 45 year old ship received a $60 million refit in 2013, but that was only expected to extend the hard-working vessel’s life by 8 to 10 years. There was a proposal for a far more thorough overhaul, one which potentially would have keep the Polar Star in service until nearly 2040; but with an estimated cost of $400 million, Congress decided to go with the more economical stop-gap refit.

Polar Security Cutter

This story comes just days after the Air Force announced it’s looking for a few good hackers to help reverse engineer components on its aging fleet of B-2 bombers. Much like the Polar Star’s vintage rectifier diodes, spare parts for the the stealthy aircraft are getting increasingly difficult to find.

While the Air Force has enough money in the budget to get replacements made, the Coast Guard will just have to hope their stock of diodes holds out a little while longer. Congress has already approved the Polar Security Cutter Program, a fleet of next-generation icebreakers designed to be comparable to newer Russian and Chinese vessels. The first of these ships could set sail by 2024, providing the Polar Star some much-needed backup.

[Thanks to Chuckz for the tip.]

Ice40 Runs DOOM

Spec sheets are an important tool in determining the performance of a given part or system, but they’re not the be all and end all when it comes to engineering. However, specs alone don’t prove whether a given system can complete a given task. Sometimes, you need to actually do the work to prove it instead – as [Sylvain] has done, running DOOM on the iCE40 FPGA.

DOOM’s minimum specifications demand a 386 with 4MB RAM minimum, but it’s commonly agreed that a 486 DX2 running at 66MHz with 8MB of RAM is required to play the game smoothly. With an iCEBreaker v1.0b running a RISC V softcore at 25MHz, it may seem like a difficult task, but the RISC V core has the benefit that many instructions run in a single clock cycle that take many on the 486. While the iCEBreaker doesn’t have much RAM onboard, it’s a simple job to piggyback an 8MB SPI device on top of the existing flash storage. Control of the game is via keystrokes sent to the iCEBreaker over serial, while video is handled over a PMOD video interface with an HDMI connector.

[Sylvain] does a great job of explaining all the minute details of the work that was required to get things working, and has provided files on Github for those keen to replicate the feat or expand upon the code. Music is notably absent but MIDI output could likely be achieved without much hassle. “Does it run DOOM?” is still a question asked of many platforms, even the new Nintendo Game & Watch. Video after the break.

Continue reading “Ice40 Runs DOOM”

This LED Cube Is One Heck Of An ICEBreaker

Like the tastes of the makers that build them, LED cubes come in all shapes and sizes. From the simplest 3x3x3 microcontroller test, to fancier bespoke installations, they’re a great way to learn a bunch of useful embedded techniques and show off at the same time. [kbob] has done exactly that in spades, with a glittering cube build of his own and published a repository with all the files.

Just like a horde of orcs from Mordor, [kbob]’s cube is all about strength in numbers. Measuring 136 mm on each side, it’s constructed out of 64 x 64 P2 panels, packing 4096 LEDs per side, or 24,576 total. A Raspberry Pi is used to run the show, allowing a variety of animations to be run. Unfortunately, it lacks the raw horsepower to run this many LEDs at a decent frame rate. Instead, it’s teamed up with an ICEBreaker FPGA, which can churn out the required HUB75 signals for the panels without breaking a sweat.

Thanks to the high density of tiny LEDs, and the smooth framerate of the animations, the final effect is rather gorgeous. [kbob] notes that there’s actually a lot of people working on similar projects with ICEBreaker muscle; a recent video from [Piotr] is particularly impressive.

The LED cube will likely remain a staple for sometime, and we can’t wait to see what comes out next from the community. You can even throw in some OpenGL if you wanna get fancy. Video after the break.

Continue reading “This LED Cube Is One Heck Of An ICEBreaker”

ICEBreaker, The Open Source Development Board For FPGAs

The Hackaday Superconference is over, which is a shame, but one of the great things about our conference is the people who manage to trek out to Pasadena every year to show us all the cool stuff they’re working on. One of those people was [Piotr Esden-Tempski], founder of 1 Bit Squared, and he brought some goodies that would soon be launched on a few crowdfunding platforms. The coolest of these was the iCEBreaker, an FPGA development kit that makes it easy to learn FPGAs with an Open Source toolchain.

The hardware for the iCEBreaker includes the iCE40UP5K fpga with 5280 logic cells,, 120 kbit of dual-port RAM, 1 Mbit of single-port RAM, and a PLL, two SPIs and two I2Cs. Because the most interesting FPGA applications include sending bits out over pins really, really fast, there’s also 16 Megabytes of SPI Flash that allows you to stream video to a LED matrix. There are enough logic cells here to synthesize a CPU, too, and already the iCEBreaker can handle the PicoRV32, and some of the RISC-V cores. Extensibility is through PMOD connectors, and yes, there’s also an HDMI output for your vintage computing projects.

If you’re looking to get into FPGA development, there’s no better time. Joe Fitz‘s WTFpga workshop from the 2018 Hackaday Superconference has already been converted to this iCEBreaker board, and yes, the seven-segment display and DIP switches are available. Between this and the Open Source iCE toolchain, you’ve got a complete development system that’s ready to go, fun to play with, and extremely capable.

Retrotechtacular: Breaking Atoms To Break The Ice

retrotechtacular-lenin-nuclear-icebreaker

This documentary from 1959 gives a satisfyingly thorough look inside a nuclear powered icebreaking ship called Lenin. This actually set a couple of world’s-firsts: it was the first nuclear powered surface vessel and the first civilian vessel to be powered thusly.

The ship was built to clear shipping paths to the northern ports of Russia. Testing of both ice and models of the ship design point to the ability to break ice layers that are two meters thick. This requires a lot of power as ice-breakers generally use their hull shape and gravity to break the ice by driving up onto it to bend the ice to the breaking point. The Lenin achieved this power using its nuclear reactor to heat steam which drove electric generators. The energy produced drove three screws to power the vessel.

Of course this was back in the day when control panels were substantial, which you can get a peek at starting half-way through the twenty-minute film. This includes a demonstration of the ship’s network of radiation sensors which alert the control room, and sound a local alarm when they are triggered. During it’s 30-year operational life the vessel had a couple of accidents stemming from refueling operations. You can find more on that over at the Wikipedia page, but stick with us after the jump to see the vintage reel.

Continue reading “Retrotechtacular: Breaking Atoms To Break The Ice”