Ski lift in at a European ski resort

Ski Lift Design Does The Impossible

Tis The Season, for those who are so inclined, to loft themselves to the top of a steep snow-covered hill and then go downhill, really fast. And if something gets in their way, turn. Whether they be on skis, a snowboard, or some other means, getting down usually involves using gravity. Getting up, on the other hand, usually involves a ski lift. And in the video by [kalsan15] after the break, we learn how technology has stepped in to make even the most inaccessible slopes just a lift ride away.

Ski lift in at a European ski resort
A ski lift that can only turn left.

In its most simple form, a ski lift is two pulleys connected by a steel cable. The pulley at the bottom of the hill is powered, and the pulley at the top of the hill serves as an idler. Attached to the steel cable are some means for a person to either sit down or grab a handle and be hoisted to the top of the hill.

Such a simple arrangement works fine if the geography allows for it, but what if there are turns, or there need to be multiple idlers to keep the wire taut but also close to the ground? Again, the most basic ski lifts have limitations. If the cable turns left around the idler, then the attachment for the handle or chair has to be on the right, making a right turn around the idler an impossibility.

How then can this problem be solved? We won’t spoil the outcome, but we recommend checking out [kalsan15]’s video for an excellent description of the problem and the solution that’ll leave you wondering “Why didn’t I think of that!?”

If you don’t find this hacky enough, then take a moment to learn how you too can not just make a gas-powered ski lift for your cabin in the woods, but then ride your slope down on your DIY Ski Bike!

Continue reading “Ski Lift Design Does The Impossible”

Geared Cable Winder Keeps Vive Sync Cable Neatly Wound

Long cables are only neat once – before they’re first unwrapped. Once that little cable tie is taken off, a cable is more likely to end up rats-nested than neatly coiled.

Preventing that is the idea behind this 3D-printed cable reel. The cable that [Kevin Balke] wants to make easier to deal with is a 50 foot (15 meters) long Vive lighthouse sync cable. That seems a bit much to us, but it makes sense to separate the lighthouses as much as possible and mount them up high enough for the VR system to work properly.

[Kevin] put a good deal of effort into making this cable reel, which looks a little like an oversize baitcasting-style fishing reel. The cable spool turns on a crank that also runs a 5:1 reduction geartrain powering a shaft with a deep, shallow-pitch crossback thread. An idler runs in the thread and works back and forth across the spool, laying up the incoming cable neatly. [Kevin] reports that the reciprocating mechanism was the hardest bit to print, as surface finish affected the mechanism’s operation as much as the geometry of the mating parts. The video below shows it working smoothly; we wonder how much this could be scaled up for tidying up larger cables and hoses.

This is another great entry in our 3D Printed Gears, Pulleys, and Cams Contest. The contest runs through February 19th, so there’s still plenty of time to get your entries in. Check out [Kevin]’s entry along with all the others, and see what you can come up with.

Continue reading “Geared Cable Winder Keeps Vive Sync Cable Neatly Wound”

Homebrew Attachment Turns Angle Grinder Into Slimline Belt Sander

If there’s a small power tool as hackable as the angle grinder, we haven’t found it yet. These versatile tools put a lot of power in the palm of your hand, and even unhacked they have a huge range of functionality, from cutting to grinding to polishing and cleaning, just by choice of what goes on the arbor.

With a simple homebrew attachment, [Darek] turned his angle grinder into a micro-belt sander that’s great for those hard-to-reach places. The attachment that clamps where the disc guard normally lives adds a drive roller to the grinder’s arbor; idler rollers ride on the end of a small pneumatic spring that keeps the belt under tension. The belts themselves are cut down from wider sanding belts, and the attachment can take belts of various widths. And best of all, he did it all without any fancy machine tools. No lathe? No problem – the drive roller was ground to the proper crowned profile needed to keep belts centered using the angle grinder itself. The only problem we see is that the attachment can’t be easily removed from the grinder, but that’s OK. Grinders are like potato chips, after all – you can’t stop at one.

This isn’t [Darek]’s first angle grinder hacking rodeo, of course. And if you’re looking for inspiration on how to hack yours, look no further: a floor sander, a precision surface grinder, or even an e-bike can be built.

Continue reading “Homebrew Attachment Turns Angle Grinder Into Slimline Belt Sander”