Copper Electroplating The Cheap And Safe Way

[A_Steingrube] has posted a guide to his favorite method of copper electroplating. Plating copper onto other metals is popular with the steampunk crowd, but it does have other uses. Copper plate is often used as a prep step for plating other metals, such as nickel and silver. It also (usually) increases the conductivity of the metal to be plated. [A_Steingrube] is using the copper acetate method of plating. What is somewhat novel about his method is that he chose to make his own electrolyte solution from household chemicals. The copper acetate is created by mixing distilled vinegar and household hydrogen peroxide in a 50/50 ratio. The mixture is heated and then a piece of copper scouring pad is placed in. The scouring pad is partially dissolved, providing copper ions, and turning the solution blue.

The next step is to clean the material to be plated. [A_Steingrube] uses Cameo Aluminum and Stainless cleaner for this, though we think any good degreaser will work. The actual electroplating process consists of connecting a piece of copper to the positive terminal of a 6 volt battery. Copper scouring pad is again used for its high surface area. The material to be plated is connected to the negative side of the battery. He warns to keep the solution and the material being plated in constant motion to avoid heavy “burn spots”, which can flake off after the plating process. The results speak for themselves. As with any bare copper material, the electroplated layer will quickly oxidize if not protected.

Building A Bike For 100 Miles Per Hour

bike

 

As a kid, [Tom] followed all the automotive land speed record attempts on the Bonneville Salt Flats. The cars used in these attempts were all built by guys in their garages, and as a bicycle frame builder, [Tom] is keenly aware of the land speed record for bikes. One thought leads to another, and [Tom] decided he would see how fast one of his frames could go.

Aside from a gigantic gear for his custom bike, [Tom] also needed a little help from a friend. The current land speed record on a bicycle was done by drafting behind a drag racer. [Tom] doesn’t have a drag racer, or a wide expanse of flat open ground in his native England, so he did the next best thing: drafting behind a Ford Zephyr on an abandoned WWII airstrip.

On the runway, [Tom] was able to get his bike up to 80 miles an hour. Wanting to see how fast he could go in ideal conditions, the bike was taken to the garage, put on a pair of rollers, and measured as it was brought up to speed. With a lot of effort, [Tom] was able to get up to 102 miles per hour, incredibly fast for something powered by human muscle.

3D Printing With Liquid Metals

Gallium

While 3D printers of today are basically limited to plastics and resins, the holy grail of desktop fabrication is printing with metal. While we won’t be printing out steel objects on a desktop printer just yet, [Collin Ladd], [Ju-Hee So], [John Muth], and [Michael D. Dickey] from North Carolina State University are slowly working up to that by printing objects with tiny spheres of liquid metal.

The medium the team is using for their metallic 3D prints is an alloy of 75% gallium and 25% indium. This alloy is liquid at room temperatures, but when exposed to an oxygen atmosphere, a very thin layer of oxide forms on a small metal bead squeezed out of a syringe. Tiny metal sphere by tiny metal sphere, the team can build up metallic objects out of this alloy, stacking the beads into just about any shape imaginable.

In addition to small metal spheres, [Collin] and his team were also able to create free-standing wires that are able to join electrical components. Yes, combined with a pick and place machine, a printer equipped with this technology could make true printed circuit boards.

Even though the team is only working on very small scales with gallium, they do believe this technology could be scaled up to print aluminum. A challenging endeavour, but something that would turn the plastic-squeezing 3D printers of today into something much more like the Star Trek replicators of tomorrow.

Video demo below, or check out [Collin]’s editing room floor and a vimeo channel. Here’s the paper if you’ve got a Wiley subscription.

Continue reading “3D Printing With Liquid Metals”

The Making Of A Katana Hand Guard

tiger

Even though the handmade portion of Hackaday is still in its infancy, we expected to put up a post on traditional japanese sword making by now. What [Kelvin] sent in to the tip line far surpases the artistry of forging a katana by hand. It’s a tsuba, the hand guard for a katana, and over the course of two videos (one and two), you can see this masterpiece of traditional metalworking techniques take shape.

Tsubas usually come in a matched set, one for the katana, or long sword, and another for the wakizashi, a slightly shorter sword. [Ford Hallam] was asked to construct the tsuba for a katana that had been lost to the sands of time. Fortunately, a black and white photograph of the original as well as the matching wakizashi tsuba were available for reference, making the design of this tsuba an exercise in replication.

The piece of metal this tsuba was constructed from is made out of a slightly modified traditional alloy of 75% copper and 25% silver. After the blank was cast, many, many hours of scraping, filing and hammering began before the design was laid out.

The craftsmanship in this tsuba is, quite simply, insane. There are about 100 different pieces of metal inlaid into the tsuba to emulate the tiger’s stripes, and hundreds of hours of work in hand carving every leaf and every bit of fur.

Even more, no power tools were used in the creation of this hand guard; everything was crafted using the same methods, tools, and materials as the original tsuba. A masterful piece of craftsmanship, indeed.

Continue reading “The Making Of A Katana Hand Guard”

Crown Earns You The Title King Of The Junkyard

crown-king-of-the-junkyard

[Greg Shikhman] wanted to use the school tools one more time before graduation. After hitting up some local motorcycle shops around town for parts he fashioned this crown for himself.

He didn’t pay ‘the iron price‘ as the motorcycle roller chain is waste material anyway. Chains do wear out and these were left over after being replaced with new ones. He first cleaned them up with a bit of WD-40 solvent, xylene, and soapy water to cut through the grime. There was also a layer of black oxide which normally keeps them from rusting which he peeled off with a dunk in some hydrochloric acid.

Chains are flexible and this would have made for a disheveled looking crown. The fix involved using an aluminum form the size of his head to keep the crown in round while he did his TIG welding. A double row of polished steel ball bearings take the place of jewels. As if the ten-pounder wasn’t painful enough he added four rings of bicycle chain as accents which he admits makes the thing unwearable because they dig into his noggin. We still don’t think that’s a good enough excuse to post about the project and not include an image of him wearing the thing during the junkyard coronation.

It would be fun to see a follow-up king-ring with similar LED features as that engagement ring but using this heavy-metal design style.

Update: Lost PLA Metal Casting — The Movie

lost-pla-metal-casting-movie

Turning 3D printed plastic parts into metal objects is not a new concept. But we don’t see a lot of it and enjoyed watching the documentary version of [3DTOPO’s] lost PLA metal casting process so much we figured you’d want to see it too.

The thirty-five minute video walks through every part of the process which we originally learned about in September of last year. The process was developed as a way to fabricate parts that will be used in high-stress applications. For instance, the part seen above is a mounting bracket for the ball screws that moves the Z axis on a huge CNC build he’s been working on. A plastic part will break under the strain so he needed to make it out of aluminum alloy.

To start, the piece is modeled and printed in plastic to check the fit. Once it’s just right he scales it to 103% and prints it again to account for the shrinking of the metal as it cools. The next step is pictured above, adding paths using rigid foam insulation that allow for the metal pour and for air to escape. This is packed into a plaster and sand mold which dries before being cooked in a furnace to vaporize the foam and PLA. This leaves a perfect mold for the metal pour.

After the break you can see a 5-minute overview version of the project.

Continue reading “Update: Lost PLA Metal Casting — The Movie”

Drilling Perfectly Centered Holes

If you’ve ever been caught in the situation of needing to drill a clean straight hole down the center of a bolt or rod, you’ve probably tried and ended up with a broken bit or tilted hole, and a ton of cursing to boot.

[Vik] let us know about this nifty trick for drilling ‘down the middle’ using a simple hobby drill press and vice. He claims it’s ‘physics guiding the bit’ but in reality its just crafty use of a chuck. Either way the quick trick works, and will hopefully save a lot of hackers some headaches in the future.

Let us know in the comments if you have any simple quick tips that you use when you’re out in the shop.