Old Chainsaw Repurposed For Kitchen Use

There are many ways to keep critical appliances running during a power outage. Maybe a UPS for a computer, a set of solar panels to charge your phone, or even a generator to keep your refrigerator or air conditioning working. This modification to a standard blender will also let you ride through a power outage while still being able to make delicious beverages. It runs on gasoline.

The build uses an old chainsaw to power the blades of the blender. [Bob] was able to design and build an entirely new drivetrain to get this device to work, starting by removing the chainsaw chain and bar and attaching a sprocket to the main shaft of the motor. A chain connects it to a custom-made bracket holding part of an angle grinder, which supports the blender jar. Add in a chain guard for safety and you’ll have a blender with slightly more power than the average kitchen appliance.

The video of the build is worth watching, even if your boring, electric-powered blender suits your needs already. The shop that [Bob] works in has about every tool we could dream of, including welders, 3D printers, band saws, and even a CNC plasma cutter. It reminds us of [This Old Tony]’s shop.

Continue reading “Old Chainsaw Repurposed For Kitchen Use”

Retrotechtacular: Making Chains

We take the everyday materials of engineering for granted, as ubiquitous components rather than as complex items in their own right. Sure, we know that an integrated circuit represents the pinnacle of a hundred years’ development in the field of electronics, but to us it’s simply a black box with some wires. Even with more basic materials it’s easy to forget the work that goes into their manufacture, as for example with the two videos below the break. They both take a look from a very different angle at the creation of the same product: metal chain. However, the approaches couldn’t be more different as the two examples are separated by about a century and with vastly different techniques and material.

The first film follows the manufacture of the chain and anchor that would have been found on a ship around the turn of the twentieth century. One of the text frames mentions Netherton Works, allowing us to identify it as being filmed at N. Hingley & Sons, a specialist anchor and chain manufacturer based in the area to the west of the English city of Birmingham known as the Black Country. It’s a window on a manufacturing world that has entirely disappeared, as large gangs of men do almost every task in the process by hand, with very few automated steps. There is scant regard for health and safety in handling the huge pieces of red-hot metal, and the material in question is not the steel we’d be used to today but wrought iron. The skill required to perform some of the steps such as forge-welding large anchor parts under a steam hammer is very significant, and the film alone can not convey it. More recent videos of similar scenes in Chinese factories do a better job.

The other video is contemporary, a How It’s Made look at chain manufacture. Here the chains involved are much smaller, everything is done by automated machinery, and once we have got over marveling at the intricacy of the process we can see that there is far more emphasis on the metallurgy. The wire is hard drawn before the chain is formed, and then hardened and annealed in a continuous process by a pair of induction heaters and water baths. I’m trying really hard to avoid a minor rant about the propensity of mass-market entertainment such as this for glossing over parts of the process. A keen eye notices that each link has become welded but we are not shown the machine that performs the task.

Most of us will never have the chance of a peek into a chain factory, so the medium of YouTube industrial films and videos is compulsive viewing. These two views of what is essentially the same process could not be more different, however it would be wrong to assume that one has replaced the other. There would have been mechanised production of small chains when the first film was made, and large chains will still be made today with fewer workers and from arc-welded steel rather than wrought iron. Plants like the Hingley one in Netherton may have closed in the 1980s, but there is still a demand for chains and anchors.

Continue reading “Retrotechtacular: Making Chains”

Steampunk-Inspired Art Clock!

Getting paid to do what you enjoy is a special treat. A machinist and fabricator by trade — hobbyist hacker by design — [spdltd] was commissioned to build a mechanical art installation with a steampunk twist. Having complete creative control, he convinced his client to let him make something useful: a giant electro-mechanical clock.

Pieced together from copper, brass, steel, aluminium, and stainless steel, this outlandish design uses an Arduino Yun — a combination Linux and Arduino microcontroller board — to control the stepper motor and query the internet for the local time. Upon boot, the clock auto-calibrates by rotating the clock face until a sensor detects an extra peg and uses that to zero on twelve o’clock; the Yun then grabs the local time over the WiFi and sends the stepper motor a-spinning ’till the correct time is displayed.

At first glance, you may find it hard to get an accurate read of what time it is, but an accent piece’s pegs denote the quarter hour once it lines up with the notch above each hour. At least this one doesn’t require you to match colours or do much math to check the time.

Continue reading “Steampunk-Inspired Art Clock!”

Retrotechtacular: Forging Of Chain By Smiths

drop-forgingAh, the days when men were men and people died of asbestos related illnesses in their 30s. Let this video take you back to the ancient times when chains were forged by hand, destructively tested using wooden capstans, and sent off to furnish the ships of the line, way back in the year 1940.

The video is something of an advertisement for the Netherton iron works, located in the English midlands. Founded sometime in the mid 19th century, it appears the tooling and machinery didn’t change much the hundred years before this was filmed.

The chain begins as a gigantic mass of wrought iron bars brought in from a forge. These bars are stockpiled, then sent through chain shears that cut them into manageable lengths a foot or so long. The next scene would probably look the same in 1940 as 1840, with gangs of men taking one of the bars, heating it in a forge, beating it on an anvil, and threading it through the last link in the chain they worked on. This isn’t the satisfying machinations of industrial automata you’d see on How It’s Made. No, this is hard manual labor.

Whether through simple quality control or an edict from the crown, the completed chains are tested, or more specifically, proofed. Yard long samples are tested to their failure point, and entire chains are proofed to their carrying capacity in 15 fathom ( 90 feet) long lengths. These chains are then examined link by link, stamped and certified, and sent off to mines, factories, tramp steamers, and battleships.

Although the Netherton iron works no longer exists, it did boast a few claims to fame in its day. It manufactured the anchors and chain for both the Titanic and Lusitania. Of course, such a large-scale production of wrought chain in such an archaic method would be impossible today; today, every wrought iron foundry has been shuttered for decades. If you’ve ever wondered how such massive things were made with a minimal amount of machinery, though, there you go.

Continue reading “Retrotechtacular: Forging Of Chain By Smiths”

Hardware Store Robot Hand

hardware-store-robot-hand

Here’s a robot hand which can be built using mostly hardware store items. It doesn’t have the strongest of grips, but it does have lifelike movement. The demonstration video shows it picking up small objects like a metal nut.

The image above shows the ring and pinky fingers of the hand beginning to flex. These are controlled by the servo motors mounted in the palm area. The skeletal structure of each digit begins with the links of a bicycle chain. The links are first separated by removing the friction fit rods. Each rod is replaced with a screw and a nut, which also allows the springs (which open the digits) to be anchored at each ‘knuckle’.

[Aaron Thomen] didn’t stop the design process once the hand was finished. He went on to build a controller which lets you pull some rings with your fingers to affect movement. This movement is measured by a set of potentiometers and translated into electrical signals to position the hand’s servo motors. The demo, as well as two how-to videos are embedded below.

Continue reading “Hardware Store Robot Hand”

Crown Earns You The Title King Of The Junkyard

crown-king-of-the-junkyard

[Greg Shikhman] wanted to use the school tools one more time before graduation. After hitting up some local motorcycle shops around town for parts he fashioned this crown for himself.

He didn’t pay ‘the iron price‘ as the motorcycle roller chain is waste material anyway. Chains do wear out and these were left over after being replaced with new ones. He first cleaned them up with a bit of WD-40 solvent, xylene, and soapy water to cut through the grime. There was also a layer of black oxide which normally keeps them from rusting which he peeled off with a dunk in some hydrochloric acid.

Chains are flexible and this would have made for a disheveled looking crown. The fix involved using an aluminum form the size of his head to keep the crown in round while he did his TIG welding. A double row of polished steel ball bearings take the place of jewels. As if the ten-pounder wasn’t painful enough he added four rings of bicycle chain as accents which he admits makes the thing unwearable because they dig into his noggin. We still don’t think that’s a good enough excuse to post about the project and not include an image of him wearing the thing during the junkyard coronation.

It would be fun to see a follow-up king-ring with similar LED features as that engagement ring but using this heavy-metal design style.

Wooden Machine Belongs In Willy Wonka’s Factory

Behold the wooden machine (translated) that is used for… well it does… it was built because… Okay, this is a case where asking what it does or why it was built is the wrong question. [Erich Schatt] began building the piece that he calls “Wheels” back in 1995. It took just seven years to complete, and is made entirely of wood. The video after the break shows a multitude of moving parts.

The chains were modeled after bicycle chains, which are used to transfer motion from the “rider” throughout the machine. The gearing for each segment was meticulously calculated, then perfected through trial and error. The complexity even calls for a differential and universal joints. It’s mesmerizing to watch and for that reason it’s made appearances at conventions and been featured in art exhibitions.

It’s also worth mentioning that this comes from a very humble-looking shop. [Erich] posted some pictures of his studio and aside from the abundance of bar clamps, it’s just your average garage or basement setup.

Continue reading “Wooden Machine Belongs In Willy Wonka’s Factory”