That’s A Lot Of Building Systems

The only thing makers like more than building things is making systems to build things. [Eric Hunting] has compiled a list of these modular building systems.

You’ve certainly heard of LEGO, grid beam, and 80/20, but what about Troxes or Clickaloo? The 70 page document has a helpful index at the beginning arranged in families of similar systems followed by information about each and some helpful links.

As the well-known XKCD comic likes to point out, the issue with standards is that they tend to proliferate instead of getting adopted, so this might be a good list to check before you start to implement your brilliant spin on modular construction. It’s possible the right system is already waiting for you.

The list certainly isn’t exhaustive, but it’s a good place to start. If you do have the modular building system that will solve all the world’s problems though, by all means, send it to the tipsline!

OpenStructures Is A Modular Building System For The RepRap Age

Modular construction toys like LEGO and Meccano are great for prototyping, but they aren’t so great for large builds. OpenStructures promises to be a modular building system for projects large and small.

A series of images showing the disassembly of a short, red cabinet and its reassembly as a tall, white cabinet. The shelves are reused between both objects since they both are part of the OS Grid.

Originally conceived in 2007 by [Thomas Lommée], OpenStructures is a modern, more robust reinterpretation of Grid Beam, which was itself a reinterpretation of the earlier Living Structures. By using a common standard (PDF), parts can be reused project after project as they would with LEGO, meaning you can spend more time building and less time cutting or figuring out joints. OpenStructures parts need connection points, part diameters, or part dimensions at multiples of 20 mm to be compatible. To fulfill the spirit of the project, parts should be designed for disassembly, use recyclable materials when possible, and be Open Source.

The system seems like a great starting point for prototyping furniture or other large builds more quickly than building everything on a case-by-case basis. By including diameters for round objects as well as square and rectangular profiles, OpenStructures is a more flexible (and aesthetically pleasing?) option than Grid Beam.

A couple more options for furniture-scale modular construction are these big LEGO bricks or copper pipe.

(via Low Tech Magazine)

Morphing Keyboard Gets You Dialed In Just Right

So you’re tired of rectangular, brick wall-staggered keyboards and want to go split and/or ergo. But how? Which style? What do? Here’s what you do: you build one of these here LHM Morph boards and customize the crap out of it, because that’s what it’s for.

So what is this thing, anyway? Is it a even a keyboard? Well, as long as you can press switches and send key commands to a computer, it certainly smells like a keyboard to us. Now that we’ve gotten that out of the way, what’s going on here is that [LifeHackerMax] has built a highly-customizable version of the LHM, their 26-key split. The LHM Morph can be fine-tuned to nearly any degree imaginable, including the tenting angle. The keys are grouped in modules that can slide back and forth to suit your varying finger lengths. As they are half-round, these modules can also be tilted and rotated until they’re just right.

But the super cool thing about the LHM Morph is the way it goes together — like LEGO. It’s completely modular, and you don’t even have to go split if you’re not ready for that. But all the pieces connect via rods made of copper wire. If you’d like to make one for yourself, the 3D files are up on Thingiverse, and the firmware is on GitHub. Be sure to check out the video after the break.

Does this keyboard remind you of anything? [Peter Lyons]’ Squeezebox, perhaps?

Continue reading “Morphing Keyboard Gets You Dialed In Just Right”

A large PCB with empty sockets

Sensor Playground Keeps Track Of Indoor Air Quality Through The Cloud

When [tdw] wasn’t feeling well one day, his wife suggested that it might be due to poor air quality in their home. While an ordinary person could have simply opened a window after hearing such an idea, [tdw] instead showed his true hacker spirit and set about measuring the indoor air quality. He began by designing a simple PCB to measure CO2 and volatile organic compound (VOC) levels, but eventually broadened his scope to end up with the Sensor Playground: a plug-and-play platform to read out various sensors and store the results in the cloud.

A large PCB with several sensor modules and a microcontrollerDeliberately designed to be easy to assemble with minimal soldering skills, the Sensor Playground consists of a big two-layer PCB onto which various modules can be plugged. It supports either an ESP32 DevKit or an Adafruit Feather module to provide processing power, and provides sockets for a bunch of sensors, conveniently wired with power and SPI or I2C. It also provides a rotary encoder and two buttons for user input. All source files are available on [tdw]’s GitHub page, ready to be applied to any kind of sensing task.

[tdw] set up his Sensor Playground with sensors measuring CO2, VOC, PM2.5 (particulate matter), as well as temperature and relative humidity. A web interface allows anyone to track these measurements in real-time. The open and modular design should make it easy to extend this system with various other sensor types: we can imagine that things like solar irradiation, outside temperature and wind speed would also add useful data to the mix. Perhaps even a Geiger counter to keep track of radiation levels?

As indoor air quality sensors go, this one is definitely comprehensive and easy to use. We’ve featured other air quality sensors before, some of which also link their data to the cloud.

Detail of an LED display made using ping-pong balls

Modular Design Enables Huge Ping-Pong Ball LED Displays

Ping-pong balls have many uses: apart from playing table tennis, they have been used for countless art projects, science experiments, and even to raise ships from the bottom of the ocean. As it turns out, they also come in handy as diffusers for LED pixels, allowing the construction of large-size displays without requiring large individual LEDs.

[david] designed an LED ping-pong ball display using 3D printed components, which allows for the construction of arbitrarily-large LED displays thanks to a strictly modular design. The basic unit is a small piece that holds a single LED module and has a cup-like structure for attaching a standard table tennis ball. Twenty-five of these basic units combine together into a panel that also contains wiring ducts. Finally, any number of these panels can be combined into a display, thanks to clips that give the structure rigidity in the out-of-plane direction.

A 3D-printed frame for making an LED display
A single panel holds 25 LEDs and comes with cable ducts. On the right is a clip for connecting multiple frames together.

Of course, simply mounting LED modules is not enough to create a display: the LEDs also need to be connected to power and data lines. [david] didn’t relish the thought of having to cut and strip 1,800 pieces of wire, and therefore devised a clever way of automating this process: he put a bunch of wires onto a piece of card stock and used a laser cutter to burn off the insulation at regular intervals. Then it was simply a matter of soldering these wires onto the LEDs and snipping off pieces along the data bus.

The finished panel is driven by a combination of a Teensy 3.2 to generate the data signals and a Raspberry Pi to process the images. You can see the rather impressive result in the video embedded below; if this inspires you to build your own, you’ll be happy to hear that the STL files and all code are available on [david]’s project page.

Massive LED displays are always fun to watch, and although this is not the first one to use ping-pong balls as diffusers, its modularity and open-source design makes this one perhaps the easiest to replicate. Assuming you have a good supplier of ping-pong balls, of course.

Continue reading “Modular Design Enables Huge Ping-Pong Ball LED Displays”